Quantum Methods for Neural Networks and Application to Medical Image
Classification
- URL: http://arxiv.org/abs/2212.07389v1
- Date: Wed, 14 Dec 2022 18:17:19 GMT
- Title: Quantum Methods for Neural Networks and Application to Medical Image
Classification
- Authors: Jonas Landman, Natansh Mathur, Yun Yvonna Li, Martin Strahm, Skander
Kazdaghli, Anupam Prakash, Iordanis Kerenidis
- Abstract summary: We introduce two new quantum methods for neural networks.
The first is a quantum orthogonal neural network, which is based on a quantum pyramidal circuit.
The second method is quantum-assisted neural networks, where a quantum computer is used to perform inner product estimation.
- Score: 5.817995726696436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning techniques have been proposed as a way to
potentially enhance performance in machine learning applications.
In this paper, we introduce two new quantum methods for neural networks. The
first one is a quantum orthogonal neural network, which is based on a quantum
pyramidal circuit as the building block for implementing orthogonal matrix
multiplication. We provide an efficient way for training such orthogonal neural
networks; novel algorithms are detailed for both classical and quantum
hardware, where both are proven to scale asymptotically better than previously
known training algorithms.
The second method is quantum-assisted neural networks, where a quantum
computer is used to perform inner product estimation for inference and training
of classical neural networks.
We then present extensive experiments applied to medical image classification
tasks using current state of the art quantum hardware, where we compare
different quantum methods with classical ones, on both real quantum hardware
and simulators. Our results show that quantum and classical neural networks
generates similar level of accuracy, supporting the promise that quantum
methods can be useful in solving visual tasks, given the advent of better
quantum hardware.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification [0.0]
We propose a hybrid quantum-classical neural network architecture where each neuron is a variational quantum circuit.
On simulated hardware, we observe that the hybrid neural network achieves roughly 10% higher classification accuracy and 20% better minimization of cost than an individual variational quantum circuit.
arXiv Detail & Related papers (2022-01-05T21:06:30Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
We introduce quantum algorithms to solve tasks such as matrix product or distance estimation.
These results are then used to develop new quantum algorithms for unsupervised machine learning.
We will also present new quantum algorithms for neural networks, or deep learning.
arXiv Detail & Related papers (2021-11-05T16:36:09Z) - Medical image classification via quantum neural networks [5.817995726696436]
We study two different quantum neural network techniques for medical image classification.
We benchmark our techniques on two different imaging modalities, retinal color fundus images and chest X-rays.
arXiv Detail & Related papers (2021-09-04T09:41:15Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Mutual Reinforcement between Neural Networks and Quantum Physics [0.0]
Quantum machine learning emerges from the symbiosis of quantum mechanics and machine learning.
The use of classical machine learning as a tool applied to quantum physics problems.
The design of a quantum neural network based on the dynamics of a quantum perceptron with the application of shortcuts to adiabaticity gives rise to a short operation time and robust performance.
arXiv Detail & Related papers (2021-05-27T16:20:50Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.