Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation
- URL: http://arxiv.org/abs/2202.02876v1
- Date: Sun, 6 Feb 2022 22:18:42 GMT
- Title: Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation
- Authors: Merve Turhan, Ersin \"Ozt\"urk, Hakan Ali \c{C}{\i}rpan
- Abstract summary: The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, a deep convolutional neural network-based symbol detection and
demodulation is proposed for generalized frequency division multiplexing with
index modulation (GFDM-IM) scheme in order to improve the error performance of
the system. The proposed method first pre-processes the received signal by
using a zero-forcing (ZF) detector and then uses a neural network consisting of
a convolutional neural network (CNN) followed by a fully-connected neural
network (FCNN). The FCNN part uses only two fully-connected layers, which can
be adapted to yield a trade-off between complexity and bit error rate (BER)
performance. This two-stage approach prevents the getting stuck of neural
network in a saddle point and enables IM blocks processing independently. It
has been demonstrated that the proposed deep convolutional neural network-based
detection and demodulation scheme provides better BER performance compared to
ZF detector with a reasonable complexity increase. We conclude that
non-orthogonal waveforms combined with IM schemes with the help of deep
learning is a promising physical layer (PHY) scheme for future wireless
networks
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Multiscale fusion enhanced spiking neural network for invasive BCI neural signal decoding [13.108613110379961]
This paper presents a novel approach utilizing a Multiscale Fusion Fusion Spiking Neural Network (MFSNN)
MFSNN emulates the parallel processing and multiscale feature fusion seen in human visual perception to enable real-time, efficient, and energy-conserving neural signal decoding.
MFSNN surpasses traditional artificial neural network methods, such as enhanced GRU, in both accuracy and computational efficiency.
arXiv Detail & Related papers (2024-09-14T09:53:30Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - Learning with Knowledge of Structure: A Neural Network-Based Approach
for MIMO-OFDM Detection [33.46816493359834]
Building on a reservoir computing (RC)-based approach towards symbol detection, we introduce a symmetric and decomposed binary decision neural network.
We show that the introduced symmetric neural network can decompose the original $M$-ary detection problem into a series of binary classification tasks.
Numerical evaluations demonstrate that the introduced hybrid RC-binary decision detection framework performs close to maximum likelihood model-based symbol detection methods.
arXiv Detail & Related papers (2020-12-01T18:16:19Z) - Deep Neural Networks using a Single Neuron: Folded-in-Time Architecture
using Feedback-Modulated Delay Loops [0.0]
We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops.
This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals.
The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.
arXiv Detail & Related papers (2020-11-19T21:45:58Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.