Explainable AI and Adoption of Algorithmic Advisors: an Experimental
Study
- URL: http://arxiv.org/abs/2101.02555v1
- Date: Tue, 5 Jan 2021 09:34:38 GMT
- Title: Explainable AI and Adoption of Algorithmic Advisors: an Experimental
Study
- Authors: Daniel Ben David, Yehezkel S. Resheff, Talia Tron
- Abstract summary: We develop an experimental methodology where participants play a web-based game, during which they receive advice from either a human or an algorithmic advisor.
We evaluate whether the different types of explanations affect the readiness to adopt, willingness to pay and trust a financial AI consultant.
We find that the types of explanations that promote adoption during first encounter differ from those that are most successful following failure or when cost is involved.
- Score: 0.6875312133832077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is becoming a commonplace part of our technological
experience. The notion of explainable AI (XAI) is attractive when regulatory or
usability considerations necessitate the ability to back decisions with a
coherent explanation. A large body of research has addressed algorithmic
methods of XAI, but it is still unclear how to determine what is best suited to
create human cooperation and adoption of automatic systems. Here we develop an
experimental methodology where participants play a web-based game, during which
they receive advice from either a human or algorithmic advisor, accompanied
with explanations that vary in nature between experimental conditions. We use a
reference-dependent decision-making framework, evaluate the game results over
time, and in various key situations, to determine whether the different types
of explanations affect the readiness to adopt, willingness to pay and trust a
financial AI consultant. We find that the types of explanations that promotes
adoption during first encounter differ from those that are most successful
following failure or when cost is involved. Furthermore, participants are
willing to pay more for AI-advice that includes explanations. These results add
to the literature on the importance of XAI for algorithmic adoption and trust.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Understanding the Role of Human Intuition on Reliance in Human-AI
Decision-Making with Explanations [44.01143305912054]
We study how decision-makers' intuition affects their use of AI predictions and explanations.
Our results identify three types of intuition involved in reasoning about AI predictions and explanations.
We use these pathways to explain why feature-based explanations did not improve participants' decision outcomes and increased their overreliance on AI.
arXiv Detail & Related papers (2023-01-18T01:33:50Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
arXiv Detail & Related papers (2022-07-19T16:20:37Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
Human-in-the-loop machine learning is widely used in artificial intelligence (AI) to elicit labels from experts.
In this work, we allow experts to additionally produce decision rules describing their decision-making.
We show that decision rule elicitation improves domain adaptation of the algorithm and helps to propagate expert's knowledge to the AI model.
arXiv Detail & Related papers (2021-02-23T08:07:22Z) - The human-AI relationship in decision-making: AI explanation to support
people on justifying their decisions [4.169915659794568]
People need more awareness of how AI works and its outcomes to build a relationship with that system.
In decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system.
arXiv Detail & Related papers (2021-02-10T14:28:34Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
Lack of explainability of a decision from an Artificial Intelligence based "black box" system/model is a key stumbling block for adopting AI in high stakes applications.
We demonstrate popular Explainable Artificial Intelligence (XAI) methods with a mutual case study/task.
We analyze for competitive advantages from multiple perspectives.
We recommend paths towards responsible or human-centered AI using XAI as a medium.
arXiv Detail & Related papers (2021-01-23T06:15:34Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.