論文の概要: Ask2Transformers: Zero-Shot Domain labelling with Pre-trained Language
Models
- arxiv url: http://arxiv.org/abs/2101.02661v2
- Date: Fri, 29 Jan 2021 10:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 16:12:14.107986
- Title: Ask2Transformers: Zero-Shot Domain labelling with Pre-trained Language
Models
- Title(参考訳): Ask2Transformers:事前学習言語モデルによるゼロショットドメインラベル付け
- Authors: Oscar Sainz and German Rigau
- Abstract要約: ドメインラベルをWordNetシンセセットにアサインするために,様々な事前訓練された言語モデルを利用するシステムを提案する。
我々は、異なる既成言語モデルとタスク定式化で符号化された知識を利用して、特定のWordNet定義のドメインラベルを推測する。
- 参考スコア(独自算出の注目度): 6.259224706032504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we present a system that exploits different pre-trained
Language Models for assigning domain labels to WordNet synsets without any kind
of supervision. Furthermore, the system is not restricted to use a particular
set of domain labels. We exploit the knowledge encoded within different
off-the-shelf pre-trained Language Models and task formulations to infer the
domain label of a particular WordNet definition. The proposed zero-shot system
achieves a new state-of-the-art on the English dataset used in the evaluation.
- Abstract(参考訳): 本稿では,様々な事前学習された言語モデルを用いて,wordnetのシンセクタにドメインラベルを割り当てるシステムを提案する。
さらに、システムは特定のドメインラベルを使用するように制限されない。
我々は、異なる既成言語モデルとタスク定式化で符号化された知識を利用して、特定のWordNet定義のドメインラベルを推測する。
提案したゼロショットシステムは,評価に用いる英語データセットの新たな最先端化を実現する。
関連論文リスト
- Towards Open-Domain Topic Classification [69.21234350688098]
ユーザが定義した分類をリアルタイムで受け入れるオープンドメイントピック分類システムを導入する。
ユーザは、任意の候補ラベルに対してテキストスニペットを分類し、Webインターフェースから即座にレスポンスを受け取ることができます。
論文 参考訳(メタデータ) (2023-06-29T20:25:28Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Few-Shot Object Detection in Unseen Domains [4.36080478413575]
Few-shot Object Detection (FSOD)は、データ制限のある新しいオブジェクトクラスを学ぶために近年発展している。
そこで本稿では,ドメイン固有の情報をすべて考慮し,新しいクラスを数枚追加する手法を提案する。
T-LESSデータセットを用いた実験により,提案手法はドメインギャップを著しく緩和することに成功した。
論文 参考訳(メタデータ) (2022-04-11T13:16:41Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
本稿では,異なる領域からの画像を投影することで,ドメインに依存しない遅延埋め込みを学習する手法を提案する。
挑戦的なDomainNetとDomainNet-LSベンチマークの実験は、既存のメソッドよりもアプローチの方が優れていることを示している。
論文 参考訳(メタデータ) (2021-07-12T17:57:46Z) - Sparsely Factored Neural Machine Translation [3.4376560669160394]
言語情報をニューラルマシン翻訳システムに組み込む標準的なアプローチは、注釈付き特徴ごとに別々の語彙を維持することである。
そこで本研究では,ドメイン外データの大幅な改善と,ドメイン内データに匹敵する品質を示す手法を提案する。
低リソースシナリオの場合、実験はバスク語やドイツ語のような形態素豊かな言語で行われる。
論文 参考訳(メタデータ) (2021-02-17T18:42:00Z) - Linguistically-Enriched and Context-Aware Zero-shot Slot Filling [6.06746295810681]
スロット充填は、現代のタスク指向ダイアログシステムの最も重要な課題の1つです。
新たなドメイン(すなわち、トレーニングの見当たらない)がデプロイ後に出現する可能性がある。
モデルがシームレスに適応し、見えないドメインと見えないドメインの両方からスロットを埋めることは必須である。
論文 参考訳(メタデータ) (2021-01-16T20:18:16Z) - A Correspondence Variational Autoencoder for Unsupervised Acoustic Word
Embeddings [50.524054820564395]
そこで本稿では,変数分割音声セグメントを固定次元表現にマッピングするための教師なしモデルを提案する。
結果として得られる音響単語の埋め込みは、低リソース言語とゼロリソース言語のための検索、発見、インデックスシステムの基礎を形成することができる。
論文 参考訳(メタデータ) (2020-12-03T19:24:42Z) - Unsupervised Domain Clusters in Pretrained Language Models [61.832234606157286]
大規模事前学習型言語モデルでは,教師なしのドメインによってクラスタ化される文表現を暗黙的に学習する。
このようなモデルに基づくドメインデータ選択手法を提案する。
我々は5つの異なる領域にわたるニューラルネットワーク翻訳のためのデータ選択手法を評価する。
論文 参考訳(メタデータ) (2020-04-05T06:22:16Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。