Position Correlation Enabled Quantum Imaging with Undetected Photons
- URL: http://arxiv.org/abs/2101.02761v1
- Date: Thu, 7 Jan 2021 20:51:28 GMT
- Title: Position Correlation Enabled Quantum Imaging with Undetected Photons
- Authors: Balakrishnan Viswanathan, Gabriela Barreto Lemos, and Mayukh Lahiri
- Abstract summary: Quantum imaging with undetected photons (QIUP) is a unique imaging technique that does not require the detection of the light used for illuminating the object.
We present a general theory and show that the properties of the images obtained in these two cases are significantly distinct.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum imaging with undetected photons (QIUP) is a unique imaging technique
that does not require the detection of the light used for illuminating the
object. The technique requires a correlated pair of photons. In the existing
implementations of QIUP, the imaging is enabled by the momentum correlation
between the twin photons. We investigate the complementary scenario in which
the imaging is instead enabled by the position correlation between the two
photons. We present a general theory and show that the properties of the images
obtained in these two cases are significantly distinct.
Related papers
- Temporal quantum eraser: Fusion gates with distinguishable photons [0.0]
We show that the ideal operation of two-photon gates can be recovered from distinguishable photons.
We introduce a temporal quantum eraser between a pair of modally-impure single-photon sources.
The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.
arXiv Detail & Related papers (2024-04-01T22:44:02Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum imaging exploiting twisted photon pairs [6.939768185086755]
We propose a quantum imaging scheme exploiting twisted photon pairs with tunable spatial-correlation regions.
Our work could pave a way for twisted-photon-based quantum holography and quantum microscopy.
arXiv Detail & Related papers (2022-06-13T03:16:59Z) - Fundamental resolution limit of quantum imaging with undetected photons [0.0]
Quantum imaging with undetected photons relies on the principle of induced coherence without induced emission.
We investigate the transverse resolution of this non-local imaging scheme through a general formalism.
We conclude that this result is also valid for other non-local two-photon imaging schemes.
arXiv Detail & Related papers (2022-03-11T17:28:09Z) - Observations of the nonclassical feature of photon bunching on a beam
splitter using coherent photons along the same input port [12.507208769851653]
We experimentally demonstrate coherent photon bunching on a beam splitter (BS)
The mean value of the coincidence measurements between two output photons results in the nonclassical feature of photon bunching at a 50% rate.
We discuss the origin of indistinguishability for this quantum feature using the wave nature of a photon to understand the role of a BS in quantum mechanics.
arXiv Detail & Related papers (2021-10-14T12:42:10Z) - Resolution limit in quantum imaging with undetected photons using
position correlations [0.0]
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected.
Here we present a detailed study of the resolution limits of position correlation enabled QIUP.
arXiv Detail & Related papers (2021-06-21T18:40:46Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.