Quantum imaging exploiting twisted photon pairs
- URL: http://arxiv.org/abs/2206.05892v4
- Date: Thu, 5 Jan 2023 07:43:12 GMT
- Title: Quantum imaging exploiting twisted photon pairs
- Authors: Dianzhen Cui and X. X. Yi and Li-Ping Yang
- Abstract summary: We propose a quantum imaging scheme exploiting twisted photon pairs with tunable spatial-correlation regions.
Our work could pave a way for twisted-photon-based quantum holography and quantum microscopy.
- Score: 6.939768185086755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum correlation of two-photon states has been utilized to suppress the
environmental noise in imaging down to the single-photon level. However, the
size of the coherence area of photon pairs limits the applications of quantum
imaging based on spatial correlations. Here, we propose a quantum imaging
scheme exploiting twisted photon pairs with tunable spatial-correlation regions
to circumvent this limitation. We employ a bulk-density coincidence to enhance
the imaging signal. Specifically, we introduce a re-scaled image signal, which
is immune to the background intensity distribution profile of the photon pulse.
We reveal a destructive interference between the anti-bunched photon pair and
bunched photon pair in the imaging process. Our work could pave a way for
twisted-photon-based quantum holography and quantum microscopy.
Related papers
- Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Quantum interferences and gates with emitter-based coherent photon sources [0.0]
In 2019, it was shown that the emitted single photon states often include coherence with the vacuum component.
We show how such photon-number coherence alters quantum interference experiments.
We illustrate the impact on quantum protocols by evidencing modifications in heralding efficiency and fidelity of two-qubit gates.
arXiv Detail & Related papers (2024-01-02T12:29:49Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Fundamental resolution limit of quantum imaging with undetected photons [0.0]
Quantum imaging with undetected photons relies on the principle of induced coherence without induced emission.
We investigate the transverse resolution of this non-local imaging scheme through a general formalism.
We conclude that this result is also valid for other non-local two-photon imaging schemes.
arXiv Detail & Related papers (2022-03-11T17:28:09Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Position Correlation Enabled Quantum Imaging with Undetected Photons [0.0]
Quantum imaging with undetected photons (QIUP) is a unique imaging technique that does not require the detection of the light used for illuminating the object.
We present a general theory and show that the properties of the images obtained in these two cases are significantly distinct.
arXiv Detail & Related papers (2021-01-07T20:51:28Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.