HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional
Network for Mitochondria Segmentation in EM Images
- URL: http://arxiv.org/abs/2101.02877v1
- Date: Fri, 8 Jan 2021 06:56:40 GMT
- Title: HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional
Network for Mitochondria Segmentation in EM Images
- Authors: Zhimin Yuan, Xiaofen Ma, Jiajin Yi, Zhengrong Luo, Jialin Peng
- Abstract summary: We introduce a novel hierarchical view-ensemble convolution (HVEC) to learn 3D spatial contexts using more efficient 2D convolutions.
The proposed method performs favorably against the state-of-the-art methods in accuracy and visual quality but with a greatly reduced model size.
- Score: 3.1498833540989413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation of electron microscopy (EM) is an essential step to
efficiently obtain reliable morphological statistics. Despite the great success
achieved using deep convolutional neural networks (CNNs), they still produce
coarse segmentations with lots of discontinuities and false positives for
mitochondria segmentation. In this study, we introduce a centerline-aware
multitask network by utilizing centerline as an intrinsic shape cue of
mitochondria to regularize the segmentation. Since the application of 3D CNNs
on large medical volumes is usually hindered by their substantial computational
cost and storage overhead, we introduce a novel hierarchical view-ensemble
convolution (HVEC), a simple alternative of 3D convolution to learn 3D spatial
contexts using more efficient 2D convolutions. The HVEC enables both
decomposing and sharing multi-view information, leading to increased learning
capacity. Extensive validation results on two challenging benchmarks show that,
the proposed method performs favorably against the state-of-the-art methods in
accuracy and visual quality but with a greatly reduced model size. Moreover,
the proposed model also shows significantly improved generalization ability,
especially when training with quite limited amount of training data.
Related papers
- E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D
Medical Image Segmentation [36.367368163120794]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)
It incorporates two parametrically and computationally efficient designs.
It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
We propose a hybrid encoder-decoder framework that efficiently computes spatial and temporal attentions in parallel.
We also introduce a semantic clutter-background adversarial loss during training that aids in the region of mitochondria instances from the background.
arXiv Detail & Related papers (2023-03-21T17:58:49Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Memory-efficient Segmentation of High-resolution Volumetric MicroCT
Images [11.723370840090453]
We propose a memory-efficient network architecture for 3D high-resolution image segmentation.
The network incorporates both global and local features via a two-stage U-net-based cascaded framework.
Experiments show that it outperforms state-of-the-art 3D segmentation methods in terms of both segmentation accuracy and memory efficiency.
arXiv Detail & Related papers (2022-05-31T16:42:48Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
arXiv Detail & Related papers (2021-08-15T15:29:48Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.