論文の概要: Octave Mix: Data augmentation using frequency decomposition for activity
recognition
- arxiv url: http://arxiv.org/abs/2101.02882v1
- Date: Fri, 8 Jan 2021 07:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 05:07:02.003791
- Title: Octave Mix: Data augmentation using frequency decomposition for activity
recognition
- Title(参考訳): Octave Mix: 周波数分解によるデータ拡張による活動認識
- Authors: Tatsuhito Hasegawa
- Abstract要約: Octave Mixは、低周波波形と高周波波形を周波数分解により交差させて2種類の波形を結合する簡単なDA方式です。
センサベース行動認識の4つのベンチマークデータセットを用いて,提案手法の有効性を評価する実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the research field of activity recognition, although it is difficult to
collect a large amount of measured sensor data, there has not been much
discussion about data augmentation (DA). In this study, I propose Octave Mix as
a new synthetic-style DA method for sensor-based activity recognition. Octave
Mix is a simple DA method that combines two types of waveforms by intersecting
low and high frequency waveforms using frequency decomposition. In addition, I
propose a DA ensemble model and its training algorithm to acquire robustness to
the original sensor data while remaining a wide variety of feature
representation. I conducted experiments to evaluate the effectiveness of my
proposed method using four different benchmark datasets of sensing-based
activity recognition. As a result, my proposed method achieved the best
estimation accuracy. Furthermore, I found that ensembling two DA strategies:
Octave Mix with rotation and mixup with rotation, make it possible to achieve
higher accuracy.
- Abstract(参考訳): 活動認識研究の分野では,センサデータの大量収集は困難であるが,データ拡張(da)についてはあまり議論されていない。
本研究では,センサを用いた行動認識のための新しい合成型DA手法としてOctave Mixを提案する。
Octave Mixは、周波数分解を用いて低周波と高周波の波形を交差させることにより、2種類の波形を組み合わせた単純なDA法である。
さらに,DAアンサンブルモデルとそのトレーニングアルゴリズムを提案し,多様な特徴表現を維持しつつ,元のセンサデータに対する堅牢性を取得する。
センサベース行動認識の4つのベンチマークデータセットを用いて,提案手法の有効性を評価する実験を行った。
その結果,提案手法は最適な推定精度を得た。
さらに,2つのDA戦略:Octave Mixと回転の混合,回転の混合により,精度の高いDA戦略を実現することができた。
関連論文リスト
- Generalizable Indoor Human Activity Recognition Method Based on Micro-Doppler Corner Point Cloud and Dynamic Graph Learning [12.032590125621155]
マイクロドップラーシグネチャ抽出とインテリジェントな意思決定アルゴリズムを融合させることで、TWRによる人間の活動認識を実現することができる。
本稿では,マイクロドップラー角点雲と動的グラフ学習に基づく,一般化可能な室内人間活動認識手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T02:24:07Z) - Better Generalization of White Matter Tract Segmentation to Arbitrary
Datasets with Scaled Residual Bootstrap [1.30536490219656]
ホワイトマター(WM)トラクションセグメンテーションは、脳接続研究において重要なステップである。
本稿では,WMトラクションセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:31:34Z) - Deep Unfolded Simulated Bifurcation for Massive MIMO Signal Detection [7.969977930633441]
深層学習技術と量子(インスパイアされた)アルゴリズムに基づく様々な信号検出器が提案され,検出性能が向上した。
本稿では、量子インスパイアされたアルゴリズムであるシミュレート・バイフルケーション(SB)アルゴリズムに焦点を当てる。
論文 参考訳(メタデータ) (2023-06-28T14:46:55Z) - MixupE: Understanding and Improving Mixup from Directional Derivative
Perspective [86.06981860668424]
理論上は、バニラ・ミックスアップよりも優れた一般化性能を実現するために、Mixupの改良版を提案する。
提案手法は,様々なアーキテクチャを用いて,複数のデータセットにまたがるMixupを改善した。
論文 参考訳(メタデータ) (2022-12-27T07:03:52Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Mixing Signals: Data Augmentation Approach for Deep Learning Based Modulation Recognition [5.816418334578875]
無線信号のAMRに対する混合信号に基づくデータ拡張戦略を提案する。
実験の結果,提案手法は深層学習に基づくAMRモデルの分類精度を向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-04-05T07:40:16Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - DecAug: Augmenting HOI Detection via Decomposition [54.65572599920679]
現在のアルゴリズムでは、データセット内のトレーニングサンプルやカテゴリの不均衡が不足している。
本稿では,HOI検出のためのDECAugと呼ばれる効率的かつ効率的なデータ拡張手法を提案する。
実験の結果,V-COCOおよびHICODETデータセットの3.3mAPと1.6mAPの改善が得られた。
論文 参考訳(メタデータ) (2020-10-02T13:59:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。