論文の概要: Better Generalization of White Matter Tract Segmentation to Arbitrary
Datasets with Scaled Residual Bootstrap
- arxiv url: http://arxiv.org/abs/2309.13980v1
- Date: Mon, 25 Sep 2023 09:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 16:09:07.070097
- Title: Better Generalization of White Matter Tract Segmentation to Arbitrary
Datasets with Scaled Residual Bootstrap
- Title(参考訳): 大規模残留ブートストラップによる任意データセットへの白色物質トラクトセグメンテーションの最適化
- Authors: Wan Liu and Chuyang Ye
- Abstract要約: ホワイトマター(WM)トラクションセグメンテーションは、脳接続研究において重要なステップである。
本稿では,WMトラクションセグメンテーション手法を提案する。
- 参考スコア(独自算出の注目度): 1.30536490219656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: White matter (WM) tract segmentation is a crucial step for brain connectivity
studies. It is performed on diffusion magnetic resonance imaging (dMRI), and
deep neural networks (DNNs) have achieved promising segmentation accuracy.
Existing DNN-based methods use an annotated dataset for model training.
However, the performance of the trained model on a different test dataset may
not be optimal due to distribution shift, and it is desirable to design WM
tract segmentation approaches that allow better generalization of the
segmentation model to arbitrary test datasets. In this work, we propose a WM
tract segmentation approach that improves the generalization with scaled
residual bootstrap. The difference between dMRI scans in training and test
datasets is most noticeably caused by the different numbers of diffusion
gradients and noise levels. Since both of them lead to different
signal-to-noise ratios (SNRs) between the training and test data, we propose to
augment the training scans by adjusting the noise magnitude and develop an
adapted residual bootstrap strategy for the augmentation. To validate the
proposed approach, two dMRI datasets were used, and the experimental results
show that our method consistently improved the generalization of WM tract
segmentation under various settings.
- Abstract(参考訳): ホワイトマター(WM)トラクションセグメンテーションは脳接続研究において重要なステップである。
拡散磁気共鳴イメージング(dMRI)で行われ、ディープニューラルネットワーク(DNN)は有望なセグメンテーション精度を達成した。
既存のDNNベースのメソッドは、モデルトレーニングにアノテーション付きデータセットを使用する。
しかし、異なるテストデータセット上で訓練されたモデルの性能は分布シフトのため最適ではなく、任意のテストデータセットへのセグメンテーションモデルのより良い一般化を可能にするwmパスセグメンテーションアプローチの設計が望ましい。
本研究では, スケールド残余ブートストラップを用いた一般化を改良したwm路分節法を提案する。
トレーニングにおけるdMRIスキャンとテストデータセットの違いは、拡散勾配とノイズレベルの違いによって最も顕著に生じる。
どちらもトレーニングデータとテストデータの間に異なる信号対雑音比(SNR)をもたらすため,ノイズの大きさを調整してトレーニングスキャンを増強し,拡張のための適応された残留ブートストラップ戦略を開発することを提案する。
提案手法の有効性を検証するため, 2つのdMRIデータセットを用い, 実験結果から, WMトラクションセグメンテーションの様々な条件下での一般化を一貫して改善したことを示す。
関連論文リスト
- Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
磁気共鳴画像(MRI)データの再構成は、ディープラーニングによって肯定的な影響を受けている。
重要な課題は、トレーニングとテストデータ間の分散シフトへの一般化を改善することだ。
論文 参考訳(メタデータ) (2024-02-12T12:50:10Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
我々は、時間的デュアルディープス・スコーリング(TDDS)と呼ばれる新しいデータセット・プルーニング手法を提案する。
本手法は,10%のトレーニングデータで54.51%の精度を達成し,ランダム選択を7.83%以上,他の比較手法を12.69%以上上回る結果を得た。
論文 参考訳(メタデータ) (2023-11-22T03:45:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Hybrid Representation-Enhanced Sampling for Bayesian Active Learning in
Musculoskeletal Segmentation of Lower Extremities [0.9287179270753105]
本研究では,密度と多様性の両基準を統合したハイブリッドな表現強化サンプリング戦略を提案する。
MRIとCT画像の2つの下肢(LE)データセットで実験を行った。
論文 参考訳(メタデータ) (2023-07-26T06:52:29Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Spherical coordinates transformation pre-processing in Deep Convolution
Neural Networks for brain tumor segmentation in MRI [0.0]
深層畳み込みニューラルネットワーク(DCNN)は、最近非常に有望な結果を示している。
DCNNモデルは、優れたパフォーマンスを達成するために、大きな注釈付きデータセットが必要です。
本研究では,DCNNモデルの精度を向上させるために3次元球面座標変換を仮定した。
論文 参考訳(メタデータ) (2020-08-17T05:11:05Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z) - A Learning Strategy for Contrast-agnostic MRI Segmentation [8.264160978159634]
我々は、非前処理脳MRIスキャンのコントラスト非依存的セマンティックセマンティックセグメンテーションを可能にするディープラーニング戦略を提案する。
提案した学習手法であるSynthSegは,訓練中のハエのコントラストが多種多様である合成サンプル画像を生成する。
我々は,1000名以上の被験者と4種類のMRコントラストからなる4種類のデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-03-04T11:00:57Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。