論文の概要: On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds
- arxiv url: http://arxiv.org/abs/2101.03000v1
- Date: Fri, 8 Jan 2021 13:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 08:02:30.957320
- Title: On the Turnpike to Design of Deep Neural Nets: Explicit Depth Bounds
- Title(参考訳): 深部ニューラルネット設計のためのターンパイクについて:詳細深さ境界
- Authors: Timm Faulwasser and Arne-Jens Hempel and Stefan Streif
- Abstract要約: 本稿では,Deep Neural Networks (DNN) において,どの層を考慮すべきかという質問に対する定量的回答を試みる。
基礎となる仮定は、層ごとのニューロンの数、すなわちDNNの幅が一定であることである。
我々は、仮定の到達可能性と訓練問題における正規化項の散逸誘導選択に基づいて、DNNの必要な深さの明示的な境界を証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: It is well-known that the training of Deep Neural Networks (DNN) can be
formalized in the language of optimal control. In this context, this paper
leverages classical turnpike properties of optimal control problems to attempt
a quantifiable answer to the question of how many layers should be considered
in a DNN. The underlying assumption is that the number of neurons per layer --
i.e., the width of the DNN -- is kept constant. Pursuing a different route than
the classical analysis of approximation properties of sigmoidal functions, we
prove explicit bounds on the required depths of DNNs based on asymptotic
reachability assumptions and a dissipativity-inducing choice of the
regularization terms in the training problem. Numerical results obtained for
the two spiral task data set for classification indicate that the proposed
estimates can provide non-conservative depth bounds.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)のトレーニングが最適制御言語で形式化できることはよく知られている。
本稿では,DNNにおいて何層を考慮すべきかという問題に対して,最適制御問題の古典的なターンパイク特性を活用して,定量解を試行する。
基礎となる前提は、層毎のニューロン数(つまりDNNの幅)が一定であるということである。
シグモダル関数の近似特性の古典的解析とは異なる経路から、漸近的到達可能性仮定とトレーニング問題における正規化項の選択によるDNNの必要深さの明示的境界を証明した。
分類のための2つのスパイラルタスクデータセットから得られた数値結果は,提案した推定値が非保守的な深さ境界を提供できることを示している。
関連論文リスト
- Information-Theoretic Generalization Bounds for Deep Neural Networks [22.87479366196215]
ディープニューラルネットワーク(DNN)は、実用的な応用において、非常に優れた一般化能力を示す。
本研究の目的は,情報理論の一般化境界による教師あり学習における深度の影響とメリットを捉えることである。
論文 参考訳(メタデータ) (2024-04-04T03:20:35Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Variational Inference for Infinitely Deep Neural Networks [0.4061135251278187]
非有界深度ニューラルネットワーク(UDN)
我々は、無限に深い確率モデルである非有界深度ニューラルネットワーク(UDN)を導入し、その複雑さをトレーニングデータに適用する。
我々はUDNを実データと合成データに基づいて研究する。
論文 参考訳(メタデータ) (2022-09-21T03:54:34Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
本稿では,レキシックなDeep Reinforcement Learning(DeepRL)に基づく確率制約マルコフ決定プロセスを提案する。
有名なDeepRLアルゴリズムDQNの辞書版も提案され、シミュレーションによって検証されている。
論文 参考訳(メタデータ) (2020-10-19T13:09:14Z) - Higher-order Quasi-Monte Carlo Training of Deep Neural Networks [0.0]
本稿では,DNN (Deep Neural Network) によるDtO (Data-to-Observable) マップのトレーニングに準モンテカルロ点を用いた新しいアルゴリズム手法と誤差解析を提案する。
論文 参考訳(メタデータ) (2020-09-06T11:31:42Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。