Knowledge AI: New Medical AI Solution for Medical image Diagnosis
- URL: http://arxiv.org/abs/2101.03063v1
- Date: Fri, 8 Jan 2021 15:30:09 GMT
- Title: Knowledge AI: New Medical AI Solution for Medical image Diagnosis
- Authors: Yingni Wang, Shuge Lei, Jian Dai and Kehong Yuan
- Abstract summary: We propose a method of knowledge AI, which is a combination of perceptual AI and clinical knowledge and experience.
Based on this method, the geometric information mining of medical images can represent the experience and information and evaluate the quality of medical images.
- Score: 1.6587907336704157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of medical AI has always been a problem. The effect of
traditional perceptual AI algorithm in medical image processing needs to be
improved. Here we propose a method of knowledge AI, which is a combination of
perceptual AI and clinical knowledge and experience. Based on this method, the
geometric information mining of medical images can represent the experience and
information and evaluate the quality of medical images.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision.
In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions.
We introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images.
arXiv Detail & Related papers (2023-06-20T20:23:46Z) - Online learning for X-ray, CT or MRI [6.211286162347693]
Medical imaging plays an important role in the medical sector in identifying diseases.
In recent years, medical professionals have started adopting Computer-Aided Diagnosis (CAD) systems to evaluate medical images.
Medical research is already entered a new era of research which is called Artificial Intelligence (AI)
arXiv Detail & Related papers (2023-06-10T17:14:41Z) - Diagnosis of Paratuberculosis in Histopathological Images Based on
Explainable Artificial Intelligence and Deep Learning [0.0]
This study examines a new and original dataset using the deep learning algorithm, and visualizes the output with gradient-weighted class activation mapping (Grad-CAM)
Both the decision-making processes and the explanations were verified, and the accuracy of the output was tested.
The research results greatly help pathologists in the diagnosis of paratuberculosis.
arXiv Detail & Related papers (2022-08-02T18:05:26Z) - Towards the Use of Saliency Maps for Explaining Low-Quality
Electrocardiograms to End Users [45.62380752173638]
When using medical images for diagnosis, it is important that the images are of high quality.
In telemedicine, a common problem is that the quality issue is only flagged once the patient has left the clinic, meaning they must return in order to have the exam redone.
This paper reports on the development of an AI system for flagging and explaining low-quality medical images in real-time.
arXiv Detail & Related papers (2022-07-06T14:53:26Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can
Existing Algorithms Fulfill Clinical Requirements? [42.75635888823057]
Heatmap is a form of explanation that highlights important features for AI models' prediction.
It is unknown how well heatmaps perform on explaining decisions on multi-modal medical images.
We propose the modality-specific feature importance (MSFI) metric to tackle this clinically important but technically ignored problem.
arXiv Detail & Related papers (2022-03-12T17:18:16Z) - FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging [6.099257839022179]
FUTURE-AI framework comprises guiding principles for increased trust, safety, and adoption for AI in healthcare.
We transform the general FUTURE-AI healthcare principles to a concise and specific AI implementation guide tailored to the needs of the medical imaging community.
arXiv Detail & Related papers (2021-09-20T16:22:49Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.