論文の概要: Explainable Systematic Analysis for Synthetic Aperture Sonar Imagery
- arxiv url: http://arxiv.org/abs/2101.03134v3
- Date: Tue, 16 Mar 2021 20:33:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-11 00:02:52.800138
- Title: Explainable Systematic Analysis for Synthetic Aperture Sonar Imagery
- Title(参考訳): 合成開口ソナー画像のための説明可能なシステム解析
- Authors: Sarah Walker, Joshua Peeples, Jeff Dale, James Keller, Alina Zare
- Abstract要約: 局所的解釈可能なモデル非依存説明(LIME)などのツールを用いて,詳細かつ体系的な分析を行う。
クラス不均衡などの微調整過程における要因に対する感度を検討する。
- 参考スコア(独自算出の注目度): 2.989889278970106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present an in-depth and systematic analysis using tools such
as local interpretable model-agnostic explanations (LIME) (arXiv:1602.04938)
and divergence measures to analyze what changes lead to improvement in
performance in fine tuned models for synthetic aperture sonar (SAS) data. We
examine the sensitivity to factors in the fine tuning process such as class
imbalance. Our findings show not only an improvement in seafloor texture
classification, but also provide greater insight into what features play
critical roles in improving performance as well as a knowledge of the
importance of balanced data for fine tuning deep learning models for seafloor
classification in SAS imagery.
- Abstract(参考訳): 本稿では,合成開口ソナー(sas)データのための微調整モデルにおいて,局所的解釈可能なモデル非依存説明(lime) (arxiv:1602.04938) などのツールと,どのような変化が性能向上に繋がるかを分析するためのダイバージェンス尺度を用いて,詳細な体系的分析を行う。
クラス不均衡などの微調整過程における要因に対する感度について検討する。
その結果,海底テクスチャ分類の改善だけでなく,性能向上に重要な役割を担っている特徴や,海底画像における海底テクスチャ分類のための深層学習モデルの微調整におけるバランスデータの重要性について深い知見が得られた。
関連論文リスト
- Exploring Foundation Models Fine-Tuning for Cytology Classification [0.10555513406636088]
既存の基盤モデルが細胞学的分類にどのように適用できるかを示す。
4つの細胞分類データセットにまたがる5つの基盤モデルを評価する。
以上の結果から,LoRAによる事前学習したバックボーンの微調整により,モデル性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-22T14:34:04Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
脳形状分類タスクに適用したグラフニューラルネットワークの特徴学習特性に対するモデル選択の影響について検討する。
モデルの異なるレイヤに機能の埋め込みを組み込むことで、かなりの違いが見つかります。
論文 参考訳(メタデータ) (2024-05-02T13:26:18Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - On the Impact of Sampling on Deep Sequential State Estimation [17.92198582435315]
逐次モデルにおける状態推定とパラメータ学習は近似手法を用いてうまく行うことができる。
モンテカルロの厳密な目的は、生成的モデリング性能を向上させるために文献で提案されている。
論文 参考訳(メタデータ) (2023-11-28T17:59:49Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - The Effect of Balancing Methods on Model Behavior in Imbalanced
Classification Problems [4.370097023410272]
不均衡なデータは、マイノリティクラスからの学習不足によってモデルのパフォーマンスが影響を受けるため、分類において課題となる。
この研究は、バランスをとる方法のより困難な側面、すなわちモデル行動への影響に対処する。
これらの変化を捉えるために、説明可能な人工知能ツールは、バランスをとる前後にデータセットでトレーニングされたモデルを比較するために使用される。
論文 参考訳(メタデータ) (2023-06-30T22:25:01Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
自己教師付き学習(SSL)と自己エンコーダベースモデル(AE)の相互関係が相互関係に与える影響を示す。
本研究では, 線形ヘッドの潜在バイアスから事前学習したモデルの性能を分離するために, アウト・オブ・ディストリビューション(OOD)データに基づいて訓練された線形ヘッドを用いた新しい評価手法を開発した。
論文 参考訳(メタデータ) (2022-06-17T16:18:28Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。