論文の概要: Slow manifolds in recurrent networks encode working memory efficiently
and robustly
- arxiv url: http://arxiv.org/abs/2101.03163v1
- Date: Fri, 8 Jan 2021 18:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 05:04:15.281393
- Title: Slow manifolds in recurrent networks encode working memory efficiently
and robustly
- Title(参考訳): 作業メモリを効率的かつロバストに符号化するリカレントネットワークにおけるスロー多様体
- Authors: Elham Ghazizadeh, ShiNung Ching
- Abstract要約: ワーキングメモリ(working memory)は、潜在情報の保存と操作を短時間で行う認知機能である。
作業メモリのネットワークレベルメカニズムを調べるために,トップダウンモデリング手法を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Working memory is a cognitive function involving the storage and manipulation
of latent information over brief intervals of time, thus making it crucial for
context-dependent computation. Here, we use a top-down modeling approach to
examine network-level mechanisms of working memory, an enigmatic issue and
central topic of study in neuroscience and machine intelligence. We train
thousands of recurrent neural networks on a working memory task and then
perform dynamical systems analysis on the ensuing optimized networks, wherein
we find that four distinct dynamical mechanisms can emerge. In particular, we
show the prevalence of a mechanism in which memories are encoded along slow
stable manifolds in the network state space, leading to a phasic neuronal
activation profile during memory periods. In contrast to mechanisms in which
memories are directly encoded at stable attractors, these networks naturally
forget stimuli over time. Despite this seeming functional disadvantage, they
are more efficient in terms of how they leverage their attractor landscape and
paradoxically, are considerably more robust to noise. Our results provide new
dynamical hypotheses regarding how working memory function is encoded in both
natural and artificial neural networks.
- Abstract(参考訳): ワーキングメモリ(working memory)は、潜在情報の保存と操作を短時間で行う認知機能であり、コンテキスト依存の計算には不可欠である。
本稿では,トップダウン・モデリング・アプローチを用いて,作業記憶のネットワークレベルのメカニズム,謎めいた問題,神経科学と機械知能の研究の中心的課題について検討する。
動作中のメモリタスクで何千ものリカレントニューラルネットワークをトレーニングし、次に続く最適化されたネットワーク上で動的システム解析を行い、そこで4つの異なる動的メカニズムが出現することを発見した。
特に,ネットワーク状態空間内の遅い安定多様体に沿って記憶がエンコードされる機構が出現し,記憶期間中に相性ニューロン活性化プロファイルが誘導されることを示す。
記憶が安定したアトラクションで直接符号化されるメカニズムとは対照的に、これらのネットワークは時間とともに刺激を忘れてしまう。
機能的に不利なように見えるが、アトラクタの景観をどのように活用するかという点では効率が良く、またパラドックス的にもノイズに対してかなり頑丈である。
この結果から,動作記憶関数が自然と人工のニューラルネットワークの両方でどのように符号化されているか,新たな動的仮説が得られた。
関連論文リスト
- Hierarchical Working Memory and a New Magic Number [1.024113475677323]
本稿では,作業記憶のシナプス理論の枠組み内でチャンキングを行うための繰り返しニューラルネットワークモデルを提案する。
我々の研究は、認知に不可欠な脳内の情報のオンザフライ組織を理解するための、概念的で分析的な枠組みを提供する。
論文 参考訳(メタデータ) (2024-08-14T16:03:47Z) - Spiking representation learning for associative memories [0.0]
本稿では、教師なし表現学習と連想記憶操作を行う新しい人工スパイクニューラルネットワーク(SNN)を提案する。
モデルの構造は新皮質列状構造から派生し,隠れた表現を学習するためのフィードフォワードプロジェクションと,連想記憶を形成するための繰り返しプロジェクションを組み合わせたものである。
論文 参考訳(メタデータ) (2024-06-05T08:30:11Z) - In search of dispersed memories: Generative diffusion models are
associative memory networks [6.4322891559626125]
生成拡散モデル(Generative diffusion model)は、多くのタスクにおいて優れたパフォーマンスを示す生成機械学習技術の一種である。
生成拡散モデルはエネルギーベースモデルと解釈でき、離散パターンで訓練すると、それらのエネルギー関数は現在のホップフィールドネットワークと同一であることを示す。
この等価性により、深層ニューラルネットワークの重み構造における現代のホップフィールドネットワークの連想力学を符号化するシナプス学習プロセスとして拡散モデルの教師付きトレーニングを解釈することができる。
論文 参考訳(メタデータ) (2023-09-29T14:48:24Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Sparse Coding in a Dual Memory System for Lifelong Learning [13.041607703862724]
Brainは、重複しないスパースコードの情報を効率的にエンコードする。
我々はマルチメモリ再生機構においてスパース符号化を用いる。
本手法は,作業モデルのシナプス重みに符号化された情報を集約し,集約する,長期的セマンティックメモリを新たに維持する。
論文 参考訳(メタデータ) (2022-12-28T12:56:15Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
本稿では,リカレントニューラルネットワークの設計とトレーニングの観点から,記憶サブタスクについて考察する。
本稿では,線形オートエンコーダを組み込んだエンコーディングベースのメモリコンポーネントを特徴とする新しいモデルであるLinear Memory Networkを提案する。
論文 参考訳(メタデータ) (2020-01-31T11:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。