論文の概要: Long Short-term Memory with Two-Compartment Spiking Neuron
- arxiv url: http://arxiv.org/abs/2307.07231v1
- Date: Fri, 14 Jul 2023 08:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-17 14:32:28.546518
- Title: Long Short-term Memory with Two-Compartment Spiking Neuron
- Title(参考訳): 2成分スパイクニューロンによる長期記憶
- Authors: Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, Kay Chen
Tan
- Abstract要約: LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
- 参考スコア(独自算出の注目度): 64.02161577259426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The identification of sensory cues associated with potential opportunities
and dangers is frequently complicated by unrelated events that separate useful
cues by long delays. As a result, it remains a challenging task for
state-of-the-art spiking neural networks (SNNs) to identify long-term temporal
dependencies since bridging the temporal gap necessitates an extended memory
capacity. To address this challenge, we propose a novel biologically inspired
Long Short-Term Memory Leaky Integrate-and-Fire spiking neuron model, dubbed
LSTM-LIF. Our model incorporates carefully designed somatic and dendritic
compartments that are tailored to retain short- and long-term memories. The
theoretical analysis further confirms its effectiveness in addressing the
notorious vanishing gradient problem. Our experimental results, on a diverse
range of temporal classification tasks, demonstrate superior temporal
classification capability, rapid training convergence, strong network
generalizability, and high energy efficiency of the proposed LSTM-LIF model.
This work, therefore, opens up a myriad of opportunities for resolving
challenging temporal processing tasks on emerging neuromorphic computing
machines.
- Abstract(参考訳): 潜在的な機会や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な出来事によってしばしば複雑になる。
その結果、時間ギャップのブリッジ化は拡張メモリ容量を必要とするため、snn(state-of-the-art spiking neural networks)による長期的な時間依存性の特定が課題となっている。
この課題に対処するため,我々はlstm-lifと呼ばれる,生物にインスパイアされた長期記憶リーク型統合・ファイアスパイキングニューロンモデルを提案する。
本モデルでは,短期記憶と長期記憶の保持に適した身体的,樹状的コンパートメントを慎重に設計した。
理論解析は、悪名高い消滅勾配問題に対処する効果をさらに確認する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
関連論文リスト
- Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
局所的な常時オンおよび位相自由可塑性のみを用いて,効率的な学習シーケンスのモデルを構築した。
鳥の鳴き声学習のモックアップでELiSeの能力を実証し、パラメトリゼーションに関してその柔軟性を実証する。
論文 参考訳(メタデータ) (2024-02-26T17:30:34Z) - Unleashing the Potential of Spiking Neural Networks for Sequential
Modeling with Contextual Embedding [32.25788551849627]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、長期的な時間的関係をモデル化する上で、生物学的に競合するものと一致しようと苦労してきた。
本稿では,新しい文脈埋め込みLeaky Integrate-and-Fire(CE-LIF)スパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-29T09:33:10Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Learn to cycle: Time-consistent feature discovery for action recognition [83.43682368129072]
時間的変動を一般化することは、ビデオにおける効果的な行動認識の前提条件である。
Squeeze Re Temporal Gates (SRTG) を導入する。
SRTPGブロックを使用する場合,GFLOの数は最小限に抑えられ,一貫した改善が見られた。
論文 参考訳(メタデータ) (2020-06-15T09:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。