Robust Blockchained Federated Learning with Model Validation and
Proof-of-Stake Inspired Consensus
- URL: http://arxiv.org/abs/2101.03300v1
- Date: Sat, 9 Jan 2021 06:30:38 GMT
- Title: Robust Blockchained Federated Learning with Model Validation and
Proof-of-Stake Inspired Consensus
- Authors: Hang Chen, Syed Ali Asif, Jihong Park, Chien-Chung Shen, Mehdi Bennis
- Abstract summary: Federated learning (FL) is a promising distributed learning solution that only exchanges model parameters without revealing raw data.
We propose a blockchain-based decentralized FL framework, termed VBFL, by exploiting two mechanisms in a blockchained architecture.
With 15% of malicious devices, VBFL achieves 87% accuracy, which is 7.4x higher than Vanilla FL.
- Score: 43.12040317316018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising distributed learning solution that
only exchanges model parameters without revealing raw data. However, the
centralized architecture of FL is vulnerable to the single point of failure. In
addition, FL does not examine the legitimacy of local models, so even a small
fraction of malicious devices can disrupt global training. To resolve these
robustness issues of FL, in this paper, we propose a blockchain-based
decentralized FL framework, termed VBFL, by exploiting two mechanisms in a
blockchained architecture. First, we introduced a novel decentralized
validation mechanism such that the legitimacy of local model updates is
examined by individual validators. Second, we designed a dedicated
proof-of-stake consensus mechanism where stake is more frequently rewarded to
honest devices, which protects the legitimate local model updates by increasing
their chances of dictating the blocks appended to the blockchain. Together,
these solutions promote more federation within legitimate devices, enabling
robust FL. Our emulation results of the MNIST classification corroborate that
with 15% of malicious devices, VBFL achieves 87% accuracy, which is 7.4x higher
than Vanilla FL.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices.
To avoid the single point of failure problem in FL, decentralized learning (DFL) has been proposed to use peer-to-peer communication for model aggregation.
arXiv Detail & Related papers (2023-10-10T23:45:17Z) - FAIR-BFL: Flexible and Incentive Redesign for Blockchain-based Federated
Learning [19.463891024499773]
Vanilla Federated learning (FL) relies on the centralized global aggregation mechanism and assumes that all clients are honest.
This makes it a challenge for FL to alleviate the single point of failure and dishonest clients.
We design and evaluate a novel BFL framework, and resolve the identified challenges in vanilla BFL with greater flexibility and incentive mechanism called FAIR-BFL.
arXiv Detail & Related papers (2022-06-26T15:20:45Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
Federated learning (FL) is expected to enable true real-time applications in production environments.
The empowerment of FL through blockchain (also referred to as FLchain) has some implications in terms of ledger inconsistencies and age of information (AoI)
In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance.
arXiv Detail & Related papers (2022-05-20T14:20:47Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.