Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation
- URL: http://arxiv.org/abs/2408.06885v1
- Date: Tue, 13 Aug 2024 13:33:35 GMT
- Title: Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation
- Authors: Hao Wang, Yichen Cai, Jun Wang, Chuan Ma, Chunpeng Ge, Xiangmou Qu, Lu Zhou,
- Abstract summary: We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
- Score: 12.446757264387564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decentralized Federated Learning (FL) paradigm built upon blockchain architectures leverages distributed node clusters to replace the single server for executing FL model aggregation. This paradigm tackles the vulnerability of the centralized malicious server in vanilla FL and inherits the trustfulness and robustness offered by blockchain. However, existing blockchain-enabled schemes face challenges related to inadequate confidentiality on models and limited computational resources of blockchains to perform large-scale FL computations. In this paper, we present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for FL based on the combination of the Trusted Execution Environment (TEE) and blockchain technology. We offload the FL aggregation computation into TEE to provide an isolated, trusted and customizable off-chain execution, and then guarantee the authenticity and verifiability of aggregation results on the blockchain. Moreover, we provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy to amortize the large-scale FL workload. We implement a prototype of Voltran and conduct a comprehensive performance evaluation. Extensive experimental results demonstrate that Voltran incurs minimal additional overhead while guaranteeing trust, confidentiality, and authenticity, and it significantly brings a significant speed-up compared to state-of-the-art ciphertext aggregation schemes.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning [3.3701306798873305]
Federated learning (FL) is expected to enable true real-time applications in production environments.
The empowerment of FL through blockchain (also referred to as FLchain) has some implications in terms of ledger inconsistencies and age of information (AoI)
In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance.
arXiv Detail & Related papers (2022-05-20T14:20:47Z) - Towards a Secure and Reliable Federated Learning using Blockchain [5.910619900053764]
Federated learning (FL) is a distributed machine learning technique that enables collaborative training in which devices perform learning using a local dataset while preserving their privacy.
Despite advantages, FL still suffers from several challenges related to reliability, tractability, and anonymity.
We propose a secure and trustworthy blockchain framework (SRB-FL) tailored to FL.
arXiv Detail & Related papers (2022-01-27T04:09:53Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Robust Blockchained Federated Learning with Model Validation and
Proof-of-Stake Inspired Consensus [43.12040317316018]
Federated learning (FL) is a promising distributed learning solution that only exchanges model parameters without revealing raw data.
We propose a blockchain-based decentralized FL framework, termed VBFL, by exploiting two mechanisms in a blockchained architecture.
With 15% of malicious devices, VBFL achieves 87% accuracy, which is 7.4x higher than Vanilla FL.
arXiv Detail & Related papers (2021-01-09T06:30:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.