On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning
- URL: http://arxiv.org/abs/2205.10201v1
- Date: Fri, 20 May 2022 14:20:47 GMT
- Title: On the Decentralization of Blockchain-enabled Asynchronous Federated
Learning
- Authors: Francesc Wilhelmi, Elia Guerra, Paolo Dini
- Abstract summary: Federated learning (FL) is expected to enable true real-time applications in production environments.
The empowerment of FL through blockchain (also referred to as FLchain) has some implications in terms of ledger inconsistencies and age of information (AoI)
In this paper, we shed light on the implications of the FLchain setting and study the effect that both the AoI and ledger inconsistencies have on the FL performance.
- Score: 3.3701306798873305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL), thanks in part to the emergence of the edge
computing paradigm, is expected to enable true real-time applications in
production environments. However, its original dependence on a central server
for orchestration raises several concerns in terms of security, privacy, and
scalability. To solve some of these worries, blockchain technology is expected
to bring decentralization, robustness, and enhanced trust to FL. The
empowerment of FL through blockchain (also referred to as FLchain), however,
has some implications in terms of ledger inconsistencies and age of information
(AoI), which are naturally inherited from the blockchain's fully decentralized
operation. Such issues stem from the fact that, given the temporary ledger
versions in the blockchain, FL devices may use different models for training,
and that, given the asynchronicity of the FL operation, stale local updates
(computed using outdated models) may be generated. In this paper, we shed light
on the implications of the FLchain setting and study the effect that both the
AoI and ledger inconsistencies have on the FL performance. To that end, we
provide a faithful simulation tool that allows capturing the decentralized and
asynchronous nature of the FLchain operation.
Related papers
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation [12.446757264387564]
We present Voltran, an innovative hybrid platform designed to achieve trust, confidentiality, and robustness for Federated Learning (FL)
We offload the FL aggregation into TEE to provide an isolated, trusted and customizable off-chain execution.
We provide strong scalability on multiple FL scenarios by introducing a multi-SGX parallel execution strategy.
arXiv Detail & Related papers (2024-08-13T13:33:35Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - The Implications of Decentralization in Blockchained Federated Learning: Evaluating the Impact of Model Staleness and Inconsistencies [2.6391879803618115]
We study the practical implications of outsourcing the orchestration of federated learning to a democratic setting such as in a blockchain.
Using simulation, we evaluate the blockchained FL operation by applying two different ML models on the well-known MNIST and CIFAR-10 datasets.
Our results show the high impact of model inconsistencies on the accuracy of the models (up to a 35% decrease in prediction accuracy)
arXiv Detail & Related papers (2023-10-11T13:18:23Z) - A Survey on Secure and Private Federated Learning Using Blockchain:
Theory and Application in Resource-constrained Computing [0.8029049649310213]
Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence.
The performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques.
To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry.
arXiv Detail & Related papers (2023-03-24T00:40:08Z) - Blockchain-based Monitoring for Poison Attack Detection in Decentralized
Federated Learning [2.322461721824713]
Federated Learning (FL) is a machine learning technique that addresses the privacy challenges in terms of access rights of local datasets.
In decentralized FL, the chief is eliminated from the learning process as workers collaborate between each other to train the global model.
We propose a technique which consists in decoupling the monitoring phase from the detection phase in defenses against poisoning attacks.
arXiv Detail & Related papers (2022-09-30T19:07:29Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Robust Blockchained Federated Learning with Model Validation and
Proof-of-Stake Inspired Consensus [43.12040317316018]
Federated learning (FL) is a promising distributed learning solution that only exchanges model parameters without revealing raw data.
We propose a blockchain-based decentralized FL framework, termed VBFL, by exploiting two mechanisms in a blockchained architecture.
With 15% of malicious devices, VBFL achieves 87% accuracy, which is 7.4x higher than Vanilla FL.
arXiv Detail & Related papers (2021-01-09T06:30:38Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.