Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis
- URL: http://arxiv.org/abs/2101.03742v1
- Date: Mon, 11 Jan 2021 08:03:57 GMT
- Title: Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis
- Authors: Soma Bandyopadhyay, Anish Datta and Arpan Pal (TCS Research, TATA
Consultancy Services, Kolkata, India)
- Abstract summary: We propose a novel mechanism to identify the clusters combining learned compact representation of time-series, Auto Encoded Compact Sequence (AECS) and hierarchical clustering approach.
Our algorithm exploits Recurrent Neural Network (RNN) based under complete Sequence to Sequence(seq2seq) autoencoder and agglomerative hierarchical clustering.
- Score: 8.660029077292346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Getting a robust time-series clustering with best choice of distance measure
and appropriate representation is always a challenge. We propose a novel
mechanism to identify the clusters combining learned compact representation of
time-series, Auto Encoded Compact Sequence (AECS) and hierarchical clustering
approach. Proposed algorithm aims to address the large computing time issue of
hierarchical clustering as learned latent representation AECS has a length much
less than the original length of time-series and at the same time want to
enhance its performance.Our algorithm exploits Recurrent Neural Network (RNN)
based under complete Sequence to Sequence(seq2seq) autoencoder and
agglomerative hierarchical clustering with a choice of best distance measure to
recommend the best clustering. Our scheme selects the best distance measure and
corresponding clustering for both univariate and multivariate time-series. We
have experimented with real-world time-series from UCR and UCI archive taken
from diverse application domains like health, smart-city, manufacturing etc.
Experimental results show that proposed method not only produce close to
benchmark results but also in some cases outperform the benchmark.
Related papers
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Efficient Forecasting of Large Scale Hierarchical Time Series via
Multilevel Clustering [26.236569277576425]
We propose a novel approach to the problem of clustering hierarchically aggregated time-series data.
We first group time series at each aggregated level, while simultaneously leveraging local and global information.
arXiv Detail & Related papers (2022-05-27T17:13:05Z) - Hierarchical clustering by aggregating representatives in
sub-minimum-spanning-trees [5.877624540482919]
We propose a novel hierarchical clustering algorithm, in which, while building the clustering dendrogram, we can effectively detect the representative point.
Under our analysis, the proposed algorithm has O(nlogn) time-complexity and O(logn) space-complexity, indicating that it has the scalability in handling massive data.
arXiv Detail & Related papers (2021-11-11T07:36:55Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - SOMTimeS: Self Organizing Maps for Time Series Clustering and its
Application to Serious Illness Conversations [3.2689702143620147]
We present a new DTW-based clustering method called SOMTimeS (a Self-Organizing Map for TIME Series)
It scales better and runs faster than other DTW-based clustering algorithms, and has similar performance accuracy.
We applied SOMtimeS to natural language conversation data collected as part of a large healthcare cohort study.
arXiv Detail & Related papers (2021-08-26T00:18:25Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Autoencoder-based time series clustering with energy applications [0.0]
Time series clustering is a challenging task due to the specific nature of the data.
In this paper we investigate the combination of a convolutional autoencoder and a k-medoids algorithm to perfom time series clustering.
arXiv Detail & Related papers (2020-02-10T10:04:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.