Autoencoder-based time series clustering with energy applications
- URL: http://arxiv.org/abs/2002.03624v1
- Date: Mon, 10 Feb 2020 10:04:29 GMT
- Title: Autoencoder-based time series clustering with energy applications
- Authors: Guillaume Richard, Beno\^it Grossin, Guillaume Germaine, Georges
H\'ebrail, Anne de Moliner
- Abstract summary: Time series clustering is a challenging task due to the specific nature of the data.
In this paper we investigate the combination of a convolutional autoencoder and a k-medoids algorithm to perfom time series clustering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series clustering is a challenging task due to the specific nature of
the data. Classical approaches do not perform well and need to be adapted
either through a new distance measure or a data transformation. In this paper
we investigate the combination of a convolutional autoencoder and a k-medoids
algorithm to perfom time series clustering. The convolutional autoencoder
allows to extract meaningful features and reduce the dimension of the data,
leading to an improvement of the subsequent clustering. Using simulation and
energy related data to validate the approach, experimental results show that
the clustering is robust to outliers thus leading to finer clusters than with
standard methods.
Related papers
- GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex Data [49.56145012222276]
We propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing.
GBCT forms clusters according to the relationship between granular-balls, instead of the traditional point relationship.
As granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods.
arXiv Detail & Related papers (2024-10-17T07:32:05Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - K-ARMA Models for Clustering Time Series Data [4.345882429229813]
We present an approach to clustering time series data using a model-based generalization of the K-Means algorithm.
We show how the clustering algorithm can be made robust to outliers using a least-absolute deviations criteria.
We perform experiments on real data which show that our method is competitive with other existing methods for similar time series clustering tasks.
arXiv Detail & Related papers (2022-06-30T18:16:11Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - A New Parallel Adaptive Clustering and its Application to Streaming Data [0.0]
This paper presents a parallel adaptive clustering (PAC) algorithm to automatically classify data while simultaneously choosing a suitable number of classes.
We develop regularized set mik-means to efficiently cluster the results from the parallel threads.
We provide theoretical analysis and numerical experiments to characterize the performance of the method.
arXiv Detail & Related papers (2021-04-06T17:18:56Z) - From Time Series to Euclidean Spaces: On Spatial Transformations for
Temporal Clustering [5.220940151628734]
We show that neither traditional clustering methods, time series specific or even deep learning-based alternatives generalise well when both varying sampling rates and high dimensionality are present in the input data.
We propose a novel approach to temporal clustering, in which we transform the input time series into a distance-based projected representation.
arXiv Detail & Related papers (2020-10-02T09:08:16Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z) - Data Curves Clustering Using Common Patterns Detection [0.0]
Analyzing and clustering time series, or in general any kind of curves, could be critical for several human activities.
New Curves Clustering Using Common Patterns (3CP) methodology is introduced.
arXiv Detail & Related papers (2020-01-05T18:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.