論文の概要: Controllable Guarantees for Fair Outcomes via Contrastive Information
Estimation
- arxiv url: http://arxiv.org/abs/2101.04108v1
- Date: Mon, 11 Jan 2021 18:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 14:47:22.059165
- Title: Controllable Guarantees for Fair Outcomes via Contrastive Information
Estimation
- Title(参考訳): コントラスト情報推定による公平な結果の制御可能な保証
- Authors: Umang Gupta and Aaron Ferber and Bistra Dilkina and Greg Ver Steeg
- Abstract要約: トレーニングデータセットにおけるバイアスの制御は、下流のアプリケーションで異なるグループ間で平等に扱われることを保証するために不可欠である。
対比情報推定器に基づく相互情報によるパリティ制御の効果的な方法を示す。
uci成人および遺産健康データセットに対する我々のアプローチをテストし、このアプローチが所望のパリティ閾値にまたがってより有益な表現を提供することを実証する。
- 参考スコア(独自算出の注目度): 32.37031528767224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controlling bias in training datasets is vital for ensuring equal treatment,
or parity, between different groups in downstream applications. A naive
solution is to transform the data so that it is statistically independent of
group membership, but this may throw away too much information when a
reasonable compromise between fairness and accuracy is desired. Another common
approach is to limit the ability of a particular adversary who seeks to
maximize parity. Unfortunately, representations produced by adversarial
approaches may still retain biases as their efficacy is tied to the complexity
of the adversary used during training. To this end, we theoretically establish
that by limiting the mutual information between representations and protected
attributes, we can assuredly control the parity of any downstream classifier.
We demonstrate an effective method for controlling parity through mutual
information based on contrastive information estimators and show that they
outperform approaches that rely on variational bounds based on complex
generative models. We test our approach on UCI Adult and Heritage Health
datasets and demonstrate that our approach provides more informative
representations across a range of desired parity thresholds while providing
strong theoretical guarantees on the parity of any downstream algorithm.
- Abstract(参考訳): トレーニングデータセットにおけるバイアスの制御は、下流のアプリケーションで異なるグループ間で平等に扱われることを保証するために不可欠である。
単純な解決策は、グループメンバーシップから統計的に独立するようにデータを変換することだが、公平さと正確性の間の合理的な妥協が望まれる場合、多くの情報を捨てる可能性がある。
もう一つの一般的なアプローチは、パリティを最大化しようとする特定の敵の能力を制限することである。
残念なことに、敵のアプローチによって生成される表現は、その効果が訓練中に使用される敵の複雑さに結びついているため、まだバイアスを保持する可能性がある。
この目的のために,表現と保護属性の相互情報を制限することによって,下流の分類器のパリティを確実に制御できることを理論的に立証する。
コントラスト情報推定器に基づく相互情報を介してパリティを制御する効果的な方法を示し,複素生成モデルに基づく変分境界に依存するアプローチよりも優れることを示す。
uci成人および遺産健康データセットに対する我々のアプローチをテストし、このアプローチが任意の下流アルゴリズムのパリティに対する強い理論的保証を提供しながら、所望のパリティ閾値の範囲にわたってより有益な表現を提供することを実証する。
関連論文リスト
- Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
脆弱なデータ収集プロセスに対するオンライン攻撃を活用します。
ゲーム理論の観点からは、対決シナリオは分布的に堅牢なゲームとして定式化される。
提案手法は,ランクアグリゲーション手法の結果を逐次的に操作する。
論文 参考訳(メタデータ) (2024-07-02T03:31:21Z) - VALID: a Validated Algorithm for Learning in Decentralized Networks with Possible Adversarial Presence [13.612214163974459]
不均一なデータを持つ非方向性ネットワークに対して、検証された分散学習のパラダイムを導入する。
VALIDプロトコルは、検証された学習保証を達成した最初のプロトコルである。
興味深いことに、VALIDは敵のない環境での最適なパフォーマンス指標を維持している。
論文 参考訳(メタデータ) (2024-05-12T15:55:43Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - An Operational Perspective to Fairness Interventions: Where and How to
Intervene [9.833760837977222]
フェアネス介入の評価と文脈化のための包括的枠組みを提案する。
予測パリティに関するケーススタディで、我々のフレームワークを実証する。
グループデータを使わずに予測パリティを実現することは困難である。
論文 参考訳(メタデータ) (2023-02-03T07:04:33Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
敵の防御は、通常、敵の音を除去したり、敵の頑強な目標モデルを訓練するために、敵の例を活用することに焦点を当てる。
逆データと自然データの関係は、逆データからクリーンデータを推測し、最終的な正しい予測を得るのに役立ちます。
本研究では, ラベル空間の遷移関係を学習するために, 逆方向の雑音をモデル化し, 逆方向の精度を向上させることを目的とした。
論文 参考訳(メタデータ) (2021-09-21T01:13:26Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
連続確率変数間の相互情報を推定することは、高次元データにとってしばしば難解で困難である。
近年の進歩は、相互情報の変動的下界を最適化するためにニューラルネットワークを活用している。
提案手法は,データサンプルペアが結合分布から引き出される確率を提供する分類器の訓練に基づく。
論文 参考訳(メタデータ) (2020-10-05T04:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。