論文の概要: Sequential Manipulation Against Rank Aggregation: Theory and Algorithm
- arxiv url: http://arxiv.org/abs/2407.01916v1
- Date: Tue, 2 Jul 2024 03:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 16:53:49.187403
- Title: Sequential Manipulation Against Rank Aggregation: Theory and Algorithm
- Title(参考訳): ランクアグリゲーションに対する逐次操作:理論とアルゴリズム
- Authors: Ke Ma, Qianqian Xu, Jinshan Zeng, Wei Liu, Xiaochun Cao, Yingfei Sun, Qingming Huang,
- Abstract要約: 脆弱なデータ収集プロセスに対するオンライン攻撃を活用します。
ゲーム理論の観点からは、対決シナリオは分布的に堅牢なゲームとして定式化される。
提案手法は,ランクアグリゲーション手法の結果を逐次的に操作する。
- 参考スコア(独自算出の注目度): 119.57122943187086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rank aggregation with pairwise comparisons is widely encountered in sociology, politics, economics, psychology, sports, etc . Given the enormous social impact and the consequent incentives, the potential adversary has a strong motivation to manipulate the ranking list. However, the ideal attack opportunity and the excessive adversarial capability cause the existing methods to be impractical. To fully explore the potential risks, we leverage an online attack on the vulnerable data collection process. Since it is independent of rank aggregation and lacks effective protection mechanisms, we disrupt the data collection process by fabricating pairwise comparisons without knowledge of the future data or the true distribution. From the game-theoretic perspective, the confrontation scenario between the online manipulator and the ranker who takes control of the original data source is formulated as a distributionally robust game that deals with the uncertainty of knowledge. Then we demonstrate that the equilibrium in the above game is potentially favorable to the adversary by analyzing the vulnerability of the sampling algorithms such as Bernoulli and reservoir methods. According to the above theoretical analysis, different sequential manipulation policies are proposed under a Bayesian decision framework and a large class of parametric pairwise comparison models. For attackers with complete knowledge, we establish the asymptotic optimality of the proposed policies. To increase the success rate of the sequential manipulation with incomplete knowledge, a distributionally robust estimator, which replaces the maximum likelihood estimation in a saddle point problem, provides a conservative data generation solution. Finally, the corroborating empirical evidence shows that the proposed method manipulates the results of rank aggregation methods in a sequential manner.
- Abstract(参考訳): 相互比較によるランクアグリゲーションは、社会学、政治、経済学、心理学、スポーツなどにおいて広く見られる。
社会的影響とそれに伴うインセンティブを考えると、潜在的な敵はランクリストを操作する強い動機を持っている。
しかし、理想的な攻撃機会と過剰な敵の能力は、既存の手法を非現実的なものにする。
潜在的なリスクを十分に調査するために、脆弱なデータ収集プロセスに対するオンライン攻撃を活用します。
ランクアグリゲーションとは独立しており、効果的な保護機構が欠如しているため、将来のデータや真の分布を知らずにペアワイズ比較を作成することにより、データ収集プロセスを妨害する。
ゲーム理論の観点からは、オンラインマニピュレータと原データソースの制御を行うランクラーとの対決シナリオを、知識の不確実性を扱う分布的に堅牢なゲームとして定式化する。
そして,ベルヌーイ法や貯水池法などのサンプリングアルゴリズムの脆弱性を分析することにより,上記のゲームにおける平衡が敵に有利であることを示す。
上記の理論解析によれば、ベイズ決定フレームワークとパラメトリック対比較モデルの大規模なクラスの下で、異なる逐次的操作ポリシーが提案されている。
完全な知識を持つ攻撃者に対しては,提案した方針の漸近的最適性を確立する。
不完全知識によるシーケンシャルな操作の成功率を高めるため、サドル点問題における最大推定を置き換える分布的に堅牢な推定器は、保守的なデータ生成ソリューションを提供する。
最後に,提案手法がランクアグリゲーション手法の結果を逐次的に操作することを示す。
関連論文リスト
- The Benefit of Being Bayesian in Online Conformal Prediction [7.713245413733777]
ブラックボックス機械学習モデルを用いて、有効な信頼セットのオンライン構築について検討する。
対象の信頼レベルを量子レベルに変換することにより、逐次明らかにされたデータシーケンスの量子レベルを予測することで、問題を小さくすることができる。
論文 参考訳(メタデータ) (2024-10-03T15:04:47Z) - Convergence Behavior of an Adversarial Weak Supervision Method [10.409652277630133]
Weak Supervisionは、機械学習のサブ領域を仮定するパラダイムである。
ラベル付きデータを用いて最新の機械学習手法を訓練することにより、大量のラベル付きデータを取得するコストを改善することができる。
ツムブのルールを組み合わせるための2つのアプローチは、2つのキャンプに分かれ、統計的推定の異なるイデオロギーを反映している。
論文 参考訳(メタデータ) (2024-05-25T02:33:17Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
ランクアグリゲーション手法の本質的な脆弱性は文献ではよく研究されていない。
本稿では,ペアデータの変更による集計結果の指定を希望する目的のある敵に焦点をあてる。
提案した標的攻撃戦略の有効性は,一連の玩具シミュレーションと実世界のデータ実験によって実証された。
論文 参考訳(メタデータ) (2022-09-13T05:59:02Z) - Poisoning Attack against Estimating from Pairwise Comparisons [140.9033911097995]
攻撃者はランクリストを操作するための強い動機と動機を持っている。
ペアワイズランキングアルゴリズムに対するデータ中毒攻撃は、ローダとアタッカーの間の動的および静的ゲームとして形式化することができる。
本稿では、2つの効率的な毒殺攻撃アルゴリズムを提案し、関連する理論的保証を確立する。
論文 参考訳(メタデータ) (2021-07-05T08:16:01Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Controllable Guarantees for Fair Outcomes via Contrastive Information
Estimation [32.37031528767224]
トレーニングデータセットにおけるバイアスの制御は、下流のアプリケーションで異なるグループ間で平等に扱われることを保証するために不可欠である。
対比情報推定器に基づく相互情報によるパリティ制御の効果的な方法を示す。
uci成人および遺産健康データセットに対する我々のアプローチをテストし、このアプローチが所望のパリティ閾値にまたがってより有益な表現を提供することを実証する。
論文 参考訳(メタデータ) (2021-01-11T18:57:33Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。