Model-Based Machine Learning for Communications
- URL: http://arxiv.org/abs/2101.04726v1
- Date: Tue, 12 Jan 2021 19:55:34 GMT
- Title: Model-Based Machine Learning for Communications
- Authors: Nir Shlezinger, Nariman Farsad, Yonina C. Eldar, and Andrea J.
Goldsmith
- Abstract summary: We review existing strategies for combining model-based algorithms and machine learning from a high level perspective.
We focus on symbol detection, which is one of the fundamental tasks of communication receivers.
- Score: 110.47840878388453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an introduction to model-based machine learning for communication
systems. We begin by reviewing existing strategies for combining model-based
algorithms and machine learning from a high level perspective, and compare them
to the conventional deep learning approach which utilizes established deep
neural network (DNN) architectures trained in an end-to-end manner. Then, we
focus on symbol detection, which is one of the fundamental tasks of
communication receivers. We show how the different strategies of conventional
deep architectures, deep unfolding, and DNN-aided hybrid algorithms, can be
applied to this problem. The last two approaches constitute a middle ground
between purely model-based and solely DNN-based receivers. By focusing on this
specific task, we highlight the advantages and drawbacks of each strategy, and
present guidelines to facilitate the design of future model-based deep learning
systems for communications.
Related papers
- On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
We discuss the architectural regularization that neural networks offer when learning such systems.
We show that simple coordinate networks with few layers can be used to solve multiple problems in modelling dynamical systems.
arXiv Detail & Related papers (2023-03-10T06:21:24Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - An Approach for Combining Multimodal Fusion and Neural Architecture
Search Applied to Knowledge Tracing [6.540879944736641]
We propose a sequential model based optimization approach that combines multimodal fusion and neural architecture search within one framework.
We evaluate our methods on two public real datasets showing the discovered model is able to achieve superior performance.
arXiv Detail & Related papers (2021-11-08T13:43:46Z) - Learn to Communicate with Neural Calibration: Scalability and
Generalization [10.775558382613077]
We propose a scalable and generalizable neural calibration framework for future wireless system design.
The proposed neural calibration framework is applied to solve challenging resource management problems in massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2021-10-01T09:00:25Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
arXiv Detail & Related papers (2020-09-09T12:56:58Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015.
Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks.
The survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models.
arXiv Detail & Related papers (2020-05-31T18:02:26Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.