Ordered Topological Deep Learning: a Network Modeling Case Study
- URL: http://arxiv.org/abs/2503.16746v1
- Date: Thu, 20 Mar 2025 23:15:12 GMT
- Title: Ordered Topological Deep Learning: a Network Modeling Case Study
- Authors: Guillermo Bernárdez, Miquel Ferriol-Galmés, Carlos Güemes-Palau, Mathilde Papillon, Pere Barlet-Ros, Albert Cabellos-Aparicio, Nina Miolane,
- Abstract summary: We revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL)<n>This paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces.<n>To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles.
- Score: 7.358417570496687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer networks are the foundation of modern digital infrastructure, facilitating global communication and data exchange. As demand for reliable high-bandwidth connectivity grows, advanced network modeling techniques become increasingly essential to optimize performance and predict network behavior. Traditional modeling methods, such as packet-level simulators and queueing theory, have notable limitations --either being computationally expensive or relying on restrictive assumptions that reduce accuracy. In this context, the deep learning-based RouteNet family of models has recently redefined network modeling by showing an unprecedented cost-performance trade-off. In this work, we revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL), an emerging field that models higher-order interactions beyond standard graph-based methods. We demonstrate that, although originally formulated as a heterogeneous Graph Neural Network, RouteNet serves as the first instantiation of a new form of TDL. More specifically, this paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces, and shows that RouteNet's architecture can be naturally described as an ordered topological neural network. To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles --which we confirm through extensive testbed experiments--, laying the foundation for the next generation of ordered TDL-driven applications.
Related papers
- Foundation Models Secretly Understand Neural Network Weights: Enhancing Hypernetwork Architectures with Foundation Models [0.7366405857677227]
We show how foundation models can improve hypernetworks with Transformer-based architectures.<n>We provide an empirical analysis of the benefits of foundation models for hypernetworks through the lens of the generalizable INR task.
arXiv Detail & Related papers (2025-03-02T10:20:02Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - When Deep Learning Meets Polyhedral Theory: A Survey [6.899761345257773]
In the past decade, deep became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural learning.
Meanwhile, the structure of neural networks converged back to simplerwise and linear functions.
arXiv Detail & Related papers (2023-04-29T11:46:53Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - RouteNet-Erlang: A Graph Neural Network for Network Performance
Evaluation [5.56275556529722]
We present emphRouteNet-Erlang, a pioneering GNN architecture designed to model computer networks.
RouteNet-Erlang supports complex traffic models, multi-queue scheduling policies, routing policies and can provide accurate estimates.
We benchmark RouteNet-Erlang against a state-of-the-art QT model, and our results show that it outperforms QT in all the network scenarios.
arXiv Detail & Related papers (2022-02-28T17:09:53Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z) - Model-Based Machine Learning for Communications [110.47840878388453]
We review existing strategies for combining model-based algorithms and machine learning from a high level perspective.
We focus on symbol detection, which is one of the fundamental tasks of communication receivers.
arXiv Detail & Related papers (2021-01-12T19:55:34Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.