NeuralFoil: An Airfoil Aerodynamics Analysis Tool Using Physics-Informed Machine Learning
- URL: http://arxiv.org/abs/2503.16323v1
- Date: Thu, 20 Mar 2025 16:44:53 GMT
- Title: NeuralFoil: An Airfoil Aerodynamics Analysis Tool Using Physics-Informed Machine Learning
- Authors: Peter Sharpe, R. John Hansman,
- Abstract summary: NeuralFoil is an open-source tool for rapid aerodynamics analysis of airfoils.<n>It computes both global and local quantities over a broad input space.<n>Results match those of XFoil closely.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: NeuralFoil is an open-source Python-based tool for rapid aerodynamics analysis of airfoils, similar in purpose to XFoil. Speedups ranging from 8x to 1,000x over XFoil are demonstrated, after controlling for equivalent accuracy. NeuralFoil computes both global and local quantities (lift, drag, velocity distribution, etc.) over a broad input space, including: an 18-dimensional space of airfoil shapes, possibly including control deflections; a 360 degree range of angles of attack; Reynolds numbers from $10^2$ to $10^{10}$; subsonic flows up to the transonic drag rise; and with varying turbulence parameters. Results match those of XFoil closely: the mean relative error of drag is 0.37% on simple cases, and remains as low as 2.0% on a test dataset with numerous post-stall and transitional cases. NeuralFoil facilitates gradient-based design optimization, due to its $C^\infty$-continuous solutions, automatic-differentiation-compatibility, and bounded computational cost without non-convergence issues. NeuralFoil is a hybrid of physics-informed machine learning techniques and analytical models. Here, physics information includes symmetries that are structurally embedded into the model architecture, feature engineering using domain knowledge, and guaranteed extrapolation to known limit cases. This work also introduces a new approach for surrogate model uncertainty quantification that enables robust design optimization. This work discusses the methodology and performance of NeuralFoil with several case studies, including a practical airfoil design optimization study including both aerodynamic and non-aerodynamic constraints. Here, NeuralFoil optimization is able to produce airfoils nearly identical in performance and shape to expert-designed airfoils within seconds; these computationally-optimized airfoils provide a useful starting point for further expert refinement.
Related papers
- FuncGenFoil: Airfoil Generation and Editing Model in Function Space [63.274584650021744]
We introduce FuncGenFoil, a novel function-space generative model that directly learns functional airfoil geometries.<n> Empirical evaluations on the AFBench dataset demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation.
arXiv Detail & Related papers (2025-02-15T07:56:58Z) - Rapid aerodynamic prediction of swept wings via physics-embedded transfer learning [10.191783697332227]
Machine learning models provide a promising way to rapidly acquire transonic swept wing flow fields.
We propose a physics-embedded transfer learning framework to efficiently train the model.
When reducing the dataset size, less than half of the wing training samples are need to reach the same error level as the nontransfer framework.
arXiv Detail & Related papers (2024-09-19T12:35:59Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Spherical Fourier Neural Operators: Learning Stable Dynamics on the
Sphere [53.63505583883769]
We introduce Spherical FNOs (SFNOs) for learning operators on spherical geometries.
SFNOs have important implications for machine learning-based simulation of climate dynamics.
arXiv Detail & Related papers (2023-06-06T16:27:17Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - A Synergistic Framework Leveraging Autoencoders and Generative
Adversarial Networks for the Synthesis of Computational Fluid Dynamics
Results in Aerofoil Aerodynamics [0.5018156030818882]
This study proposes a novel approach that combines autoencoders and Generative Adversarial Networks (GANs) for the purpose of generating CFD results.
Our innovative framework harnesses the intrinsic capabilities of autoencoders to encode aerofoil geometries into a compressed and informative 20-length vector representation.
conditional GAN network adeptly translates this vector into precise pressure-distribution plots, accounting for fixed wind velocity, angle of attack, and turbulence level specifications.
arXiv Detail & Related papers (2023-05-28T09:46:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization [9.432375767178284]
We propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils.
Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique.
arXiv Detail & Related papers (2021-01-12T21:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.