論文の概要: Room-temperature control and electrical readout of individual
nitrogen-vacancy nuclear spins
- arxiv url: http://arxiv.org/abs/2101.04769v1
- Date: Tue, 12 Jan 2021 21:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 00:24:47.815414
- Title: Room-temperature control and electrical readout of individual
nitrogen-vacancy nuclear spins
- Title(参考訳): 個々の窒素空洞核スピンの室温制御と電気的読み出し
- Authors: Michal Gulka, Daniel Wirtitsch, Viktor Iv\'ady, Jelle Vodnik, Jaroslav
Hruby, Goele Magchiels, Emilie Bourgeois, Adam Gali, Michael Trupke, Milos
Nesladek
- Abstract要約: 半導体中の核スピンは量子技術の候補となっている。
我々は、NV電子に結合した1つの14N核スピンである、そのような系の基本的な単位の電気的読み出しを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear spins in semiconductors are leading candidates for quantum
technologies, including quantum computation, communication, and sensing.
Nuclear spins in diamond are particularly attractive due to their extremely
long coherence lifetime. With the nitrogen-vacancy (NV) centre, such nuclear
qubits benefit from an auxiliary electronic qubit, which has enabled
entanglement mediated by photonic links. The transport of quantum information
by the electron itself, via controlled transfer to an adjacent centre or via
the dipolar interaction, would enable even faster and smaller processors, but
optical readout of arrays of such nodes presents daunting challenges due to the
required sub-diffraction inter-site distances. Here, we demonstrate the
electrical readout of a basic unit of such systems - a single 14N nuclear spin
coupled to the NV electron. Our results provide the key ingredients for quantum
gate operations and electrical readout of nuclear qubit registers, in a manner
compatible with nanoscale electrode structures. This demonstration is therefore
a milestone towards large-scale diamond quantum devices with semiconductor
scalability.
- Abstract(参考訳): 半導体の核スピンは量子計算、通信、センシングなど量子技術の主要な候補である。
ダイヤモンドの核スピンは、非常に長いコヒーレンス寿命のため特に魅力的である。
窒素空孔(NV)中心では、これらの核量子ビットは、フォトニックリンクを介する絡み合いを可能にする補助電子量子ビットの恩恵を受ける。
電子自体による量子情報の転送は、隣り合う中心への制御された転送や双極子相互作用によって、より高速でより小さなプロセッサが実現されるが、そのようなノードの配列の光学的読み出しは、必要な準回折サイト間距離のために困難を伴う。
ここでは、nv電子に結合した1つの14n核スピンである、そのような系の基本単位の電気的読み出しを示す。
本研究は, 量子ゲート動作と核量子ビットレジスタの電気的読み出しを, ナノスケール電極構造に適合して行うことを目的とする。
このデモンストレーションは、半導体スケーラビリティを備えた大規模ダイヤモンド量子デバイスへのマイルストーンである。
関連論文リスト
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
電子スピンレジスタのサイズを拡大するためのスケーラブルなアプローチを提案する。
我々は, 中心NVのコヒーレンス限界外における未知電子スピンの検出とコヒーレント制御を実証するために, このアプローチを実験的に実現した。
我々の研究は、ナノスケールセンシングを推進し、誤り訂正のための相関ノイズスペクトロスコピーを有効にし、量子通信のためのスピンチェーン量子ワイヤの実現を促進するため、より大きな量子レジスタを工学的に開発する方法を開拓する。
論文 参考訳(メタデータ) (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Decoupling Nuclear Spins via Interaction-Induced Freezing in Nitrogen
Vacancy Centers in Diamond [0.0]
ダイヤモンド中の窒素空洞(NV)センターは、新興量子技術のための室温プラットフォームを提供する。
我々は、NV中心が固有の核スピンをノイズの多い電磁環境から分離するための凍結プロトコルを実証する。
論文 参考訳(メタデータ) (2022-04-08T07:01:51Z) - Precise control of entanglement in multinuclear spin registers coupled
to defects [0.0]
量子ネットワークは、セキュアな通信、量子センシングの強化、分散コンピューティングといった量子情報処理において必須の役割を果たす。
量子ネットワークの最も成熟し有望なプラットフォームは、ダイヤモンドの窒素空孔中心や固体の他の色中心である。
ネットワーク用途にこれらのシステムを使用する際の課題の1つは、電子と核スピンレジスタ間の絡み合いを制御的に操作することである。
論文 参考訳(メタデータ) (2022-03-17T17:20:54Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
量子情報は、リン供与体の電子核状態に符号化される。
その結果、固体量子プロセッサの構築への道を開いた。
論文 参考訳(メタデータ) (2022-02-09T13:05:12Z) - An electron-spin qubit platform assembled atom-by-atom on a surface [5.2557648054493065]
原子間構造,コヒーレント操作,および表面上の複数の電子スピン量子ビットの読み出しを示すことにより,原子スケールの量子ビットプラットフォームを実証する。
我々の研究はアングストロームスケールの量子ビットプラットフォームの構築であり、そこでは電子スピンアレイを用いた量子関数が表面上に原子単位で構築された。
論文 参考訳(メタデータ) (2021-08-23T01:04:24Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
固体中の核スピンは環境に弱く結合し、量子情報処理と慣性センシングの魅力的な候補となる。
我々は、原子核スピンコヒーレンス時間よりも高速で1,kHzで物理的に回転するダイヤモンド中の光核スピン偏光と原子核スピンの高速量子制御を実証した。
我々の研究は、それまで到達不可能だったNV核スピンの自由を解放し、量子制御と回転センシングに対する新しいアプローチを解き放つ。
論文 参考訳(メタデータ) (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
クロック遷移は磁気ノイズから分子スピン量子ビットを保護する。
核自由度への線形結合は、電子コヒーレンスの変調と崩壊を引き起こす。
核浴への量子情報漏洩がないことは、他のデコヒーレンス源を特徴づける機会を与える。
論文 参考訳(メタデータ) (2021-06-09T16:23:47Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
核スピンは長いコヒーレンス時間を示し、環境からかなり孤立している。
マイクロ波共振器の伝送を探索して核スピンの読み出しを行う手法を提案する。
論文 参考訳(メタデータ) (2020-12-02T16:51:50Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
分子電子レベルと核スピンレベルの両方を量子ビットとして用いることができる。
ドーパントを持つ固体系では、電場が核スピン量子ビットレベル間の間隔を効果的に変化させることが示されている。
この超微細スターク効果は量子コンピューティングにおける分子核スピンの応用に有用かもしれない。
論文 参考訳(メタデータ) (2020-07-31T01:48:57Z) - Circuit Quantum Electrodynamics [62.997667081978825]
マクロレベルの量子力学的効果は、1980年代にジョセフソン接合型超伝導回路で初めて研究された。
過去20年間で、量子情報科学の出現は、これらの回路を量子情報プロセッサの量子ビットとして利用するための研究を強化してきた。
量子電磁力学(QED)の分野は、今では独立して繁栄する研究分野となっている。
論文 参考訳(メタデータ) (2020-05-26T12:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。