論文の概要: Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric
Low-Rank Matrix Sensing
- arxiv url: http://arxiv.org/abs/2101.05113v1
- Date: Wed, 13 Jan 2021 15:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 13:32:27.543092
- Title: Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric
Low-Rank Matrix Sensing
- Title(参考訳): beyond procrustes:非対称低ランクマトリクスセンシングのためのバランスフリー勾配降下
- Authors: Cong Ma, Yuanxin Li, Yuejie Chi
- Abstract要約: 低ランク行列推定は、科学と工学のさまざまなアプリケーションで中心的な役割を果たします。
既存のアプローチは、2つの行列因子のスケールのバランスをとるために計量正規化項を加えることに頼っている。
本論文では,低ランク行列の線形測定値の少ない値から回復する性能の理論的正当化について述べる。
- 参考スコア(独自算出の注目度): 36.96922859748537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-rank matrix estimation plays a central role in various applications
across science and engineering. Recently, nonconvex formulations based on
matrix factorization are provably solved by simple gradient descent algorithms
with strong computational and statistical guarantees. However, when the
low-rank matrices are asymmetric, existing approaches rely on adding a
regularization term to balance the scale of the two matrix factors which in
practice can be removed safely without hurting the performance when initialized
via the spectral method. In this paper, we provide a theoretical justification
to this for the matrix sensing problem, which aims to recover a low-rank matrix
from a small number of linear measurements. As long as the measurement ensemble
satisfies the restricted isometry property, gradient descent -- in conjunction
with spectral initialization -- converges linearly without the need of
explicitly promoting balancedness of the factors; in fact, the factors stay
balanced automatically throughout the execution of the algorithm. Our analysis
is based on analyzing the evolution of a new distance metric that directly
accounts for the ambiguity due to invertible transforms, and might be of
independent interest.
- Abstract(参考訳): 低位行列の推定は、科学と工学の様々な応用において中心的な役割を果たす。
近年, 行列分解に基づく非凸定式化は, 計算量および統計量の強い単純な勾配降下アルゴリズムによって実現可能である。
しかし、低ランク行列が非対称である場合、既存のアプローチでは、スペクトル法による初期化時に性能を損なうことなく安全に除去できる2つの行列因子のスケールのバランスをとるために正規化項を追加することに依存している。
本稿では,少数の線形測定値から低ランク行列を回収することを目的とした,行列センシング問題に対する理論的正当性について述べる。
測定アンサンブルが制限された等尺性を満たす限り、スペクトル初期化とともに勾配降下は、因子のバランス性を明確に促進することなく線形に収束する。
我々の分析は、可逆変換によるあいまいさを直接考慮し、独立した関心を持つ新しい距離計量の進化を分析することに基づいている。
関連論文リスト
- Guarantees of a Preconditioned Subgradient Algorithm for Overparameterized Asymmetric Low-rank Matrix Recovery [8.722715843502321]
本研究では, 行列分解に基づくロバストな低ランクおよび非対称な行列復元手法に着目した。
本稿では,探索行列の条件数に依存しない事前条件付きアルゴリズムの利点を継承する段階的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-22T08:58:44Z) - Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled
Gradient Descent, Even with Overparameterization [48.65416821017865]
この章では、スケールドグラデーション(ScaledGD)と呼ばれる新しいアルゴリズムアプローチを紹介します。
低ランク物体の条件数に依存しない定数速度で直線的に収束する。
様々なタスクに対して、勾配降下の低い摂動コストを維持できる。
論文 参考訳(メタデータ) (2023-10-09T21:16:57Z) - Asymmetric matrix sensing by gradient descent with small random
initialization [0.8611782340880084]
いくつかの線形測定値から低ランク行列を再構成する問題について検討する。
私たちの重要な貢献は、$texted gradient flow$と呼ぶ連続的な勾配流方程式の導入です。
論文 参考訳(メタデータ) (2023-09-04T20:23:35Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
この研究は、ディープ線形ネットワークにおけるヘッセン解の最小トレースの帰納バイアスを理解するための第一歩となる。
測定値の標準等尺性(RIP)が1より大きいすべての深さについて、ヘッセンのトレースを最小化することは、対応する終端行列パラメータのシャッテン 1-ノルムを最小化するのとほぼ同値であることを示す。
論文 参考訳(メタデータ) (2023-06-22T23:14:57Z) - Implicit Balancing and Regularization: Generalization and Convergence
Guarantees for Overparameterized Asymmetric Matrix Sensing [28.77440901439686]
最近の一連の論文は、非ランダムな正準決定(PSD)行列センシング問題に対して、この役割を一般化し始めている。
本稿では,小さなランダムな測定から得られる勾配降下の軌跡が,どちらも地球規模で良好である解へと移動することを示す。
論文 参考訳(メタデータ) (2023-03-24T19:05:52Z) - Exact Linear Convergence Rate Analysis for Low-Rank Symmetric Matrix
Completion via Gradient Descent [22.851500417035947]
因数分解に基づく勾配降下は、因数分解行列の完備化を解くためのスケーラブルで効率的なアルゴリズムである。
勾配勾配降下は, 地球自然問題の解を推定するために, 高速収束を楽しむことを示す。
論文 参考訳(メタデータ) (2021-02-04T03:41:54Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled
Gradient Descent [34.0533596121548]
低ランク行列推定は凸問題を収束させ、信号処理、機械学習、画像科学に多くの応用を見出す。
低ランク行列の個数の観点から,ScaledGDが最良となることを示す。
我々の分析は、低ランク勾配降下に類似した一般損失にも適用できる。
論文 参考訳(メタデータ) (2020-05-18T17:17:16Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。