On Misspecification in Prediction Problems and Robustness via Improper
Learning
- URL: http://arxiv.org/abs/2101.05234v2
- Date: Fri, 29 Jan 2021 21:34:04 GMT
- Title: On Misspecification in Prediction Problems and Robustness via Improper
Learning
- Authors: Annie Marsden, John Duchi, Gregory Valiant
- Abstract summary: We show that for a broad class of loss functions and parametric families of distributions, the regret of playing a "proper" predictor has lower bound scaling at least as $sqrtgamma n$.
We exhibit instances in which this is unimprovable even over the family of all learners that may play distributions in the convex hull of the parametric family.
- Score: 23.64462813525688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study probabilistic prediction games when the underlying model is
misspecified, investigating the consequences of predicting using an incorrect
parametric model. We show that for a broad class of loss functions and
parametric families of distributions, the regret of playing a "proper"
predictor -- one from the putative model class -- relative to the best
predictor in the same model class has lower bound scaling at least as
$\sqrt{\gamma n}$, where $\gamma$ is a measure of the model misspecification to
the true distribution in terms of total variation distance. In contrast, using
an aggregation-based (improper) learner, one can obtain regret $d \log n$ for
any underlying generating distribution, where $d$ is the dimension of the
parameter; we exhibit instances in which this is unimprovable even over the
family of all learners that may play distributions in the convex hull of the
parametric family. These results suggest that simple strategies for aggregating
multiple learners together should be more robust, and several experiments
conform to this hypothesis.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Universal Batch Learning Under The Misspecification Setting [4.772817128620037]
We consider the problem of universal em batch learning in a misspecification setting with log-loss.
We derive the optimal universal learner, a mixture over the set of the data generating distributions, and get a closed form expression for the min-max regret.
arXiv Detail & Related papers (2024-05-12T11:16:05Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Performative Prediction with Neural Networks [24.880495520422]
performative prediction is a framework for learning models that influence the data they intend to predict.
Standard convergence results for finding a performatively stable classifier with the method of repeated risk minimization assume that the data distribution is Lipschitz continuous to the model's parameters.
In this work, we instead assume that the data distribution is Lipschitz continuous with respect to the model's predictions, a more natural assumption for performative systems.
arXiv Detail & Related papers (2023-04-14T01:12:48Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.