Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control
- URL: http://arxiv.org/abs/2101.05328v1
- Date: Wed, 13 Jan 2021 20:06:30 GMT
- Title: Uniform Error and Posterior Variance Bounds for Gaussian Process
Regression with Application to Safe Control
- Authors: Armin Lederer, Jonas Umlauft, Sandra Hirche
- Abstract summary: We present a novel uniform error bound using Lipschitz and an analysis of the posterior variance function for a large class of kernels.
We show how these results can be used to guarantee safe control of an unknown dynamical system.
- Score: 11.42419064387567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In application areas where data generation is expensive, Gaussian processes
are a preferred supervised learning model due to their high data-efficiency.
Particularly in model-based control, Gaussian processes allow the derivation of
performance guarantees using probabilistic model error bounds. To make these
approaches applicable in practice, two open challenges must be solved i)
Existing error bounds rely on prior knowledge, which might not be available for
many real-world tasks. (ii) The relationship between training data and the
posterior variance, which mainly drives the error bound, is not well understood
and prevents the asymptotic analysis. This article addresses these issues by
presenting a novel uniform error bound using Lipschitz continuity and an
analysis of the posterior variance function for a large class of kernels.
Additionally, we show how these results can be used to guarantee safe control
of an unknown dynamical system and provide numerical illustration examples.
Related papers
- Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning [1.8175282137722093]
Uncertainty (UQ) in scientific machine learning (SciML) combines the powerful predictive power of SciML with methods for quantifying the reliability of the learned models.
We provide a new interpretation for UQ problems by establishing a new theoretical connection between some Bayesian inference problems arising in SciML and viscous Hamilton-Jacobi partial differential equations (HJ PDEs)
We develop a new Riccati-based methodology that provides computational advantages when continuously updating the model predictions.
arXiv Detail & Related papers (2024-04-12T20:54:01Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Episodic Gaussian Process-Based Learning Control with Vanishing Tracking
Errors [10.627020714408445]
We develop an episodic approach for learning GP models, such that an arbitrary tracking accuracy can be guaranteed.
The effectiveness of the derived theory is demonstrated in several simulations.
arXiv Detail & Related papers (2023-07-10T08:43:28Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.