論文の概要: Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates
- arxiv url: http://arxiv.org/abs/2101.05436v3
- Date: Sun, 31 Jan 2021 11:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 00:47:28.508089
- Title: Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates
- Title(参考訳): 分散ニューラルバリア証明書を用いた安全マルチエージェント制御の学習
- Authors: Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, Chuchu Fan
- Abstract要約: エージェントが静的な障害物や衝突に対する衝突を避けて目標を達成すべきマルチエージェント安全制御問題について検討する。
私達の中心の考えは安全証明書として制御障壁機能を学ぶことと複数のエージェント制御方針を共同で学ぶことです。
本稿では,特定の関数クラスに対して一般化を保証し,分散的に実装可能な新しい共同学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.261536710315028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the multi-agent safe control problem where agents should avoid
collisions to static obstacles and collisions with each other while reaching
their goals. Our core idea is to learn the multi-agent control policy jointly
with learning the control barrier functions as safety certificates. We propose
a novel joint-learning framework that can be implemented in a decentralized
fashion, with generalization guarantees for certain function classes. Such a
decentralized framework can adapt to an arbitrarily large number of agents.
Building upon this framework, we further improve the scalability by
incorporating neural network architectures that are invariant to the quantity
and permutation of neighboring agents. In addition, we propose a new
spontaneous policy refinement method to further enforce the certificate
condition during testing. We provide extensive experiments to demonstrate that
our method significantly outperforms other leading multi-agent control
approaches in terms of maintaining safety and completing original tasks. Our
approach also shows exceptional generalization capability in that the control
policy can be trained with 8 agents in one scenario, while being used on other
scenarios with up to 1024 agents in complex multi-agent environments and
dynamics.
- Abstract(参考訳): 本研究では,エージェントが静的障害への衝突を避け,目標を達成しながら衝突を回避すべきマルチエージェントセーフコントロール問題について検討する。
当社の中核となる考え方は,マルチエージェント制御ポリシと,コントロールバリア機能を安全証明書として学習することにあります。
本稿では,関数クラスを一般化した分散化方式で実装可能な,新しい共同学習フレームワークを提案する。
このような分散化フレームワークは任意の数のエージェントに適応することができる。
このフレームワークを基盤として,隣接エージェントの量と置換に不変なニューラルネットワークアーキテクチャを組み込むことにより,スケーラビリティをさらに向上させる。
また,テスト中の認証条件をさらに強化するために,新たな自然政策改善手法を提案する。
提案手法は,安全性の確保と作業の完了の観点から,他の主要なマルチエージェント制御手法よりも優れていることを示す。
提案手法では,複雑なマルチエージェント環境や動的環境において,最大1024エージェントの他のシナリオで使用しながら,制御ポリシを1つのシナリオで8エージェントでトレーニングすることが可能である。
関連論文リスト
- DeepSafeMPC: Deep Learning-Based Model Predictive Control for Safe
Multi-Agent Reinforcement Learning [11.407941376728258]
安全なマルチエージェント強化学習(DeepSafeMPC)のためのDeep Learning-based Model Predictive Controlと呼ばれる新しい手法を提案する。
DeepSafeMPCの重要な洞察は、環境力学を正確に予測するために、エンタライズされたディープラーニングモデルを活用することである。
Safe Multi-agent MuJoCo 環境を用いて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-11T03:17:33Z) - Learning Adaptive Safety for Multi-Agent Systems [14.076785738848924]
CBF構成により創発的行動が深く影響されることを示す。
本稿では、安全性と長期性能を高めるために、新しい適応型安全なRLフレームワークであるASRLを提案する。
ASRLをマルチロボットシステムと競合するマルチエージェントレースシナリオで評価する。
論文 参考訳(メタデータ) (2023-09-19T14:39:39Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
我々は、最先端平均場制御技術を用いて、多くのエージェントSwarm制御を分散の古典的な単一エージェント制御に変換する。
そこで我々は,衝突回避と平均場制御の学習を,知的ロボット群動作を牽引的に設計するための統一的な枠組みに統合する。
論文 参考訳(メタデータ) (2022-09-15T16:15:04Z) - Relative Distributed Formation and Obstacle Avoidance with Multi-agent
Reinforcement Learning [20.401609420707867]
マルチエージェント強化学習(MARL)に基づく分散生成・障害物回避手法を提案する。
提案手法は, 障害物回避における生成誤差, 生成収束率, オンパー成功率に関して, ベースラインと比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-11-14T13:02:45Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
分散型マルチエージェント学習と計画に対する新しいアプローチを検討する。
特に、この方法はアリコロニーの凝集、協調、行動に触発されている。
このアプローチは、単一エージェントRLと、マルチエージェントパス計画と環境修正のためのアリコロニーに触発された分散型のスティグメロジカルアルゴリズムを組み合わせたものである。
論文 参考訳(メタデータ) (2021-05-08T01:04:51Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
本稿では,マルチエージェント学習環境に固有の非定常的ポリシーダイナミクスを考慮に入れたメタマルチエージェントポリシー勾配定理を提案する。
これは、エージェント自身の非定常ポリシーダイナミクスと、環境内の他のエージェントの非定常ポリシーダイナミクスの両方を考慮するために、勾配更新をモデル化することによって達成される。
論文 参考訳(メタデータ) (2020-10-31T22:50:21Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。