Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates
- URL: http://arxiv.org/abs/2101.05436v3
- Date: Sun, 31 Jan 2021 11:29:46 GMT
- Title: Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates
- Authors: Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, Chuchu Fan
- Abstract summary: We study the multi-agent safe control problem where agents should avoid collisions to static obstacles and collisions with each other while reaching their goals.
Our core idea is to learn the multi-agent control policy jointly with learning the control barrier functions as safety certificates.
We propose a novel joint-learning framework that can be implemented in a decentralized fashion, with generalization guarantees for certain function classes.
- Score: 19.261536710315028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the multi-agent safe control problem where agents should avoid
collisions to static obstacles and collisions with each other while reaching
their goals. Our core idea is to learn the multi-agent control policy jointly
with learning the control barrier functions as safety certificates. We propose
a novel joint-learning framework that can be implemented in a decentralized
fashion, with generalization guarantees for certain function classes. Such a
decentralized framework can adapt to an arbitrarily large number of agents.
Building upon this framework, we further improve the scalability by
incorporating neural network architectures that are invariant to the quantity
and permutation of neighboring agents. In addition, we propose a new
spontaneous policy refinement method to further enforce the certificate
condition during testing. We provide extensive experiments to demonstrate that
our method significantly outperforms other leading multi-agent control
approaches in terms of maintaining safety and completing original tasks. Our
approach also shows exceptional generalization capability in that the control
policy can be trained with 8 agents in one scenario, while being used on other
scenarios with up to 1024 agents in complex multi-agent environments and
dynamics.
Related papers
- DeepSafeMPC: Deep Learning-Based Model Predictive Control for Safe
Multi-Agent Reinforcement Learning [11.407941376728258]
We propose a novel method called Deep Learning-Based Model Predictive Control for Safe Multi-Agent Reinforcement Learning (DeepSafeMPC)
The key insight of DeepSafeMPC is leveraging a entralized deep learning model to well predict environmental dynamics.
We demonstrate the effectiveness of our approach using the Safe Multi-agent MuJoCo environment.
arXiv Detail & Related papers (2024-03-11T03:17:33Z) - Learning Adaptive Safety for Multi-Agent Systems [14.076785738848924]
We show how emergent behavior can be profoundly influenced by the CBF configuration.
We present ASRL, a novel adaptive safe RL framework, to enhance safety and long-term performance.
We evaluate ASRL in a multi-robot system and a competitive multi-agent racing scenario.
arXiv Detail & Related papers (2023-09-19T14:39:39Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
We use state-of-the-art mean-field control techniques to convert many-agent swarm control into classical single-agent control of distributions.
Here, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior.
arXiv Detail & Related papers (2022-09-15T16:15:04Z) - Relative Distributed Formation and Obstacle Avoidance with Multi-agent
Reinforcement Learning [20.401609420707867]
We propose a distributed formation and obstacle avoidance method based on multi-agent reinforcement learning (MARL)
Our method achieves better performance regarding formation error, formation convergence rate and on-par success rate of obstacle avoidance compared with baselines.
arXiv Detail & Related papers (2021-11-14T13:02:45Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
We investigate a novel approach to decentralized multi-agent learning and planning.
In particular, this method is inspired by the cohesion, coordination, and behavior of ant colonies.
The approach combines single-agent RL and an ant-colony-inspired decentralized, stigmergic algorithm for multi-agent path planning and environment modification.
arXiv Detail & Related papers (2021-05-08T01:04:51Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
We propose a novel meta-multiagent policy gradient theorem that accounts for the non-stationary policy dynamics inherent to multiagent learning settings.
This is achieved by modeling our gradient updates to consider both an agent's own non-stationary policy dynamics and the non-stationary policy dynamics of other agents in the environment.
arXiv Detail & Related papers (2020-10-31T22:50:21Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.