Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic
Resonance Image Synthesis
- URL: http://arxiv.org/abs/2101.05439v1
- Date: Thu, 14 Jan 2021 03:27:16 GMT
- Title: Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic
Resonance Image Synthesis
- Authors: Xiaofeng Liu, Fangxu Xing, Jerry L. Prince, Aaron Carass, Maureen
Stone, Georges El Fakhri, Jonghye Woo
- Abstract summary: We propose a novel VAE-GAN approach to carry out tagged-to-cine MR image synthesis.
Our framework has been trained, validated, and tested using 1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI.
- Score: 11.697141493937021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tagged magnetic resonance imaging (MRI) is a widely used imaging technique
for measuring tissue deformation in moving organs. Due to tagged MRI's
intrinsic low anatomical resolution, another matching set of cine MRI with
higher resolution is sometimes acquired in the same scanning session to
facilitate tissue segmentation, thus adding extra time and cost. To mitigate
this, in this work, we propose a novel dual-cycle constrained bijective VAE-GAN
approach to carry out tagged-to-cine MR image synthesis. Our method is based on
a variational autoencoder backbone with cycle reconstruction constrained
adversarial training to yield accurate and realistic cine MR images given
tagged MR images. Our framework has been trained, validated, and tested using
1,768, 416, and 1,560 subject-independent paired slices of tagged and cine MRI
from twenty healthy subjects, respectively, demonstrating superior performance
over the comparison methods. Our method can potentially be used to reduce the
extra acquisition time and cost, while maintaining the same workflow for
further motion analyses.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z) - Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
Imaging -- Mini Review, Comparison and Perspectives [5.3148259096171175]
One drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities.
Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images.
Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality.
arXiv Detail & Related papers (2021-05-04T23:59:00Z) - MR-Contrast-Aware Image-to-Image Translations with Generative
Adversarial Networks [5.3580471186206005]
We train an image-to-image generative adversarial network conditioned on the MR acquisition parameters repetition time and echo time.
Our approach yields a peak signal-to-noise ratio and structural similarity of 24.48 and 0.66, surpassing the pix2pix benchmark model significantly.
arXiv Detail & Related papers (2021-04-03T17:05:13Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
We propose a recurrent neural network to simultaneously extract both spatial and temporal features from motion-blurred cine cardiac images.
The experimental results demonstrate substantially improved image quality on two clinical test datasets.
arXiv Detail & Related papers (2020-06-23T01:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.