Noisy Label Processing for Classification: A Survey
- URL: http://arxiv.org/abs/2404.04159v1
- Date: Fri, 5 Apr 2024 15:11:09 GMT
- Title: Noisy Label Processing for Classification: A Survey
- Authors: Mengting Li, Chuang Zhu,
- Abstract summary: In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images.
It is crucial to combat noisy labels for computer vision tasks, especially for classification tasks.
We propose an algorithm to generate a synthetic label noise pattern guided by real-world data.
- Score: 2.8821062918162146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep neural networks (DNNs) have gained remarkable achievement in computer vision tasks, and the success of DNNs often depends greatly on the richness of data. However, the acquisition process of data and high-quality ground truth requires a lot of manpower and money. In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images, i.e., noisy labels. The emergence of noisy labels is inevitable. Moreover, since research shows that DNNs can easily fit noisy labels, the existence of noisy labels will cause significant damage to the model training process. Therefore, it is crucial to combat noisy labels for computer vision tasks, especially for classification tasks. In this survey, we first comprehensively review the evolution of different deep learning approaches for noisy label combating in the image classification task. In addition, we also review different noise patterns that have been proposed to design robust algorithms. Furthermore, we explore the inner pattern of real-world label noise and propose an algorithm to generate a synthetic label noise pattern guided by real-world data. We test the algorithm on the well-known real-world dataset CIFAR-10N to form a new real-world data-guided synthetic benchmark and evaluate some typical noise-robust methods on the benchmark.
Related papers
- Group Benefits Instances Selection for Data Purification [21.977432359384835]
Existing methods for combating label noise are typically designed and tested on synthetic datasets.
We propose a method named GRIP to alleviate the noisy label problem for both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-03-23T03:06:19Z) - NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in
Natural Language Processing [26.678589684142548]
Large-scale datasets in the real world inevitably involve label noise.
Deep models can gradually overfit noisy labels and thus degrade generalization performance.
To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance.
arXiv Detail & Related papers (2023-05-18T05:01:04Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
noisy labels in real-world applications often depend on both the true label and the features.
In this work, we tackle instance-dependent label noise with a novel deep generative model that avoids explicitly modeling the noise transition matrix.
Our algorithm leverages casual representation learning and simultaneously identifies the high-level content and style latent factors from the data.
arXiv Detail & Related papers (2023-05-10T15:29:07Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in
Text Classification [23.554544399110508]
Wrong labels in training data occur when human annotators make mistakes or when the data is generated via weak or distant supervision.
It has been shown that complex noise-handling techniques are required to prevent models from fitting this label noise.
We show in this work that, for text classification tasks with modern NLP models like BERT, over a variety of noise types, existing noisehandling methods do not always improve its performance, and may even deteriorate it.
arXiv Detail & Related papers (2022-04-20T10:24:19Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
Label noise will degenerate the performance of deep learning algorithms.
By leveraging a structural causal model, we propose a novel generative approach for instance-dependent label-noise learning.
arXiv Detail & Related papers (2021-09-07T10:42:54Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.