Dynamical-decoupling-protected nonadiabatic holonomic quantum
computation
- URL: http://arxiv.org/abs/2101.05492v1
- Date: Thu, 14 Jan 2021 07:58:15 GMT
- Title: Dynamical-decoupling-protected nonadiabatic holonomic quantum
computation
- Authors: P. Z. Zhao, X. Wu, D. M. Tong
- Abstract summary: Nonadiabatic holonomic quantum computation allows for high-speed implementation of whole-geometric quantum gates.
Our protocol not only possesses the intrinsic robustness against control errors but also protects quantum gates against environment-induced decoherence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The main obstacles to the realization of high-fidelity quantum gates are the
control errors arising from inaccurate manipulation of a quantum system and the
decoherence caused by the interaction between the quantum system and its
environment. Nonadiabatic holonomic quantum computation allows for high-speed
implementation of whole-geometric quantum gates, making quantum computation
robust against control errors. Dynamical decoupling provides an effective
method to protect quantum gates against environment-induced decoherence,
regardless of collective decoherence or independent decoherence. In this paper,
we put forward a protocol of nonadiabatic holonomic quantum computation
protected by dynamical decoupling . Due to the combination of nonadiabatic
holonomic quantum computation and dynamical decoupling, our protocol not only
possesses the intrinsic robustness against control errors but also protects
quantum gates against environment-induced decoherence.
Related papers
- Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
We propose a scheme for quantum manipulation by combining the geometric phase approach with the dynamical correction technique.
Our scheme is implemented on the superconducting circuits, which also simplifies previous implementations.
arXiv Detail & Related papers (2021-10-06T14:39:52Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
We propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum systems via shortcuts to adiabaticity.
Our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.
arXiv Detail & Related papers (2021-05-28T15:23:24Z) - Implementation of hybridly protected quantum gates [2.3274138116397727]
We explore the implementation of hybridly protected quantum operations based on a simple and experimentally achievable spin model.
The protected quantum operations are controllable, well-suited for resolving various quantum tasks.
Our scheme is based on experimentally achievable Hamiltonian with reduced requirement of computational resources.
arXiv Detail & Related papers (2021-05-11T10:04:02Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
We experimentally implement nonadiabatic holonomic quantum computation with solid spins in diamond at room-temperature.
Compared with previous geometric methods, the fidelities of a universal set of holonomic single-qubit and two-qubit quantum logic gates are improved.
This work makes an important step towards fault-tolerant scalable geometric quantum computation in realistic systems.
arXiv Detail & Related papers (2021-02-18T09:02:02Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Dynamically Corrected Nonadiabatic Holonomic Quantum Gates [2.436681150766912]
The noise-resilience feature of nonadiabatic holonomic quantum computation (NHQC) still needs to be improved.
We propose a general protocol of universal NHQC with simplified control, which can greatly suppress the effect of accompanied X errors.
Numerical simulation shows that the performance of our gate can be much better than previous protocols.
arXiv Detail & Related papers (2020-12-16T15:52:38Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.