Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron
- URL: http://arxiv.org/abs/2405.00624v1
- Date: Wed, 1 May 2024 16:47:23 GMT
- Title: Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron
- Authors: Finlay Potter, Alexandre Zagoskin, Sergey Saveliev, Alexander G Balanov,
- Abstract summary: We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
- Score: 79.16635054977068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing. The charge transport in the quantum element is realized via tunneling of a charge through a quantum particle which shuttles between two terminals -- a functionality reminiscent of classical diffusive memristors. We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device. In addition, being used in artificial neural circuit, the quantum switcher is able to generate self-sustained current oscillations. Our analysis reveals that these self-oscillations are triggered only in quantum regime with a moderate rate of relaxation, and cannot exist either in a purely coherent regime or at a very high decoherence. We investigate the hysteresis and instability leading to the onset of current self-oscillations and analyze their properties depending on the circuit parameters. Our results provide a generic approach to the use of quantum regimes for controlling hysteresis and generating self-oscillations.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Derivation of a Schrödinger Equation for Single Neurons Through Stochastic Neural Dynamics [0.0]
The electrical noise (Brownian motion) in neuron membranes gives rise to an emergent' Schr"odinger equation.
This result could provide new insights into the underlying mechanisms of brain function.
arXiv Detail & Related papers (2024-06-24T07:25:57Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Parametrized constant-depth quantum neuron [56.51261027148046]
We propose a framework that builds quantum neurons based on kernel machines.
We present here a neuron that applies a tensor-product feature mapping to an exponentially larger space.
It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit.
arXiv Detail & Related papers (2022-02-25T04:57:41Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Entangled Quantum Memristors [2.9582851733261286]
We propose the interaction of two quantum memristors via capacitive and inductive coupling in superconducting circuit architectures.
The study of composed quantum memristors paves the way for developing neuromorphic quantum computers and native quantum neural networks.
arXiv Detail & Related papers (2021-07-12T10:31:47Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Decoherence Effects Break Reciprocity in Matter Transport [0.0]
We present nanoscale devices in which decoherence, modeled by random quantum jumps, produces fundamentally novel phenomena by interrupting the unitary dynamics of electron wave packets.
In these devices, the inelastic interaction of itinerant electrons with impurities acting as electron trapping centers leads to a novel steady state characterized by partial charge separation between the two leads.
The interface between the quantum and the classical worlds therefore provides a novel transport regime of value for the realization of a new category of mesoscopic electronic devices.
arXiv Detail & Related papers (2019-12-27T00:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.