Implementation of hybridly protected quantum gates
- URL: http://arxiv.org/abs/2105.04914v1
- Date: Tue, 11 May 2021 10:04:02 GMT
- Title: Implementation of hybridly protected quantum gates
- Authors: Chunfeng Wu, Chunfang Sun, Gangcheng Wang, Xun-Li Feng and Xuexi Yi
- Abstract summary: We explore the implementation of hybridly protected quantum operations based on a simple and experimentally achievable spin model.
The protected quantum operations are controllable, well-suited for resolving various quantum tasks.
Our scheme is based on experimentally achievable Hamiltonian with reduced requirement of computational resources.
- Score: 2.3274138116397727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the implementation of hybridly protected quantum operations
combining the merits of holonomy, dynamical decoupling approach and
dephasing-free feature based on a simple and experimentally achievable spin
model. The implementation of the quantum operations can be achieved in
different physical systems with controllable parameters. The protected quantum
operations are hence controllable, well-suited for resolving various quantum
computation tasks, such as executing quantum error-correction codes or quantum
error mitigation. Our scheme is based on experimentally achievable Hamiltonian
with reduced requirement of computational resources and thus, it brings us
closer towards realizing protected quantum operations for resolving quantum
computation tasks in near-term quantum devices.
Related papers
- Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement cost of realizing quantum processes [5.086696108576776]
We develop an efficiently computable tool that reliably estimates the amount of entanglement needed for realizing arbitrary quantum processes.
Our tool applies to the entanglement required to prepare a broad range of quantum states in the regime, surpassing previous methods' limitations.
arXiv Detail & Related papers (2023-11-17T17:07:26Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - On coherence of quantum operations by using Choi-Jamio{\l}kowski
isomorphism [0.0]
Coherence of quantum operations can be considered as a quantum resource.
We study the coherence of quantum operations in the framework of resource theory.
arXiv Detail & Related papers (2022-01-03T09:04:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum Computation Using Action Variables [4.087043981909747]
We argue quantum computation using action variables as fault-tolerant quantum computation, whose fault-tolerance is guaranteed by the quantum KAM theorem.
Besides, we view the Birkhoff norm form as a mathematical framework of the extended harmonic oscillator quantum computation.
arXiv Detail & Related papers (2021-09-24T12:04:27Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.