Gravitationally induced uncertainty relations in curved backgrounds
- URL: http://arxiv.org/abs/2101.05552v1
- Date: Thu, 14 Jan 2021 11:19:17 GMT
- Title: Gravitationally induced uncertainty relations in curved backgrounds
- Authors: Luciano Petruzziello and Fabian Wagner
- Abstract summary: In particular, we assume the quantum wave function to be confined to a geodesic ball on a given space-like hypersurface whose radius is a measure of the position uncertainty.
We concurrently work out a viable physical definition of the momentum operator and its standard deviation in the non-relativistic limit of the 3+1 formalism.
For the sake of illustration, we apply our general result to a number of examples arising in the context of both general relativity and extended theories of gravity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims at investigating the influence of space-time curvature on the
uncertainty relation. In particular, relying on previous findings, we assume
the quantum wave function to be confined to a geodesic ball on a given
space-like hypersurface whose radius is a measure of the position uncertainty.
On the other hand, we concurrently work out a viable physical definition of the
momentum operator and its standard deviation in the non-relativistic limit of
the 3+1 formalism. Finally, we evaluate the uncertainty relation which to
second order depends on the Ricci scalar of the effective 3-metric and the
corresponding covariant derivative of the shift vector. For the sake of
illustration, we apply our general result to a number of examples arising in
the context of both general relativity and extended theories of gravity.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Parameterized Multi-observable Sum Uncertainty Relations [9.571723611319348]
We study uncertainty relations based on variance for arbitrary finite $N$ quantum observables.
The lower bounds of our uncertainty inequalities are non-zero unless the measured state is a common eigenvector of all the observables.
arXiv Detail & Related papers (2022-11-07T04:36:07Z) - Continuous-Variable Entanglement through Central Forces: Application to
Gravity between Quantum Masses [4.362023116605902]
We show that entanglement in such experiments is sensitive to initial relative momentum only when the system evolves into non-Gaussian states.
From a quantum information perspective, the results find applications as a momentum witness of non-Gaussian entanglement.
arXiv Detail & Related papers (2022-06-26T15:07:14Z) - Equivalence principle violation from large scale structure [0.0]
We explore the interplay between the equivalence principle and a generalization of the Heisenberg uncertainty relations known as extended uncertainty principle.
We observe that, when the modified uncertainty relations hold, the weak formulation of the equivalence principle is violated, since the inertial mass of quantum systems becomes position-dependent whilst the gravitational mass is left untouched.
arXiv Detail & Related papers (2022-05-21T11:17:15Z) - Relativistic Extended Uncertainty Principle from Spacetime Curvature [0.0]
Investigation directed at relativistic modifications of the uncertainty relation derived from the curvature of the background spacetime.
Applying the 3+1-splitting in accordance with the ADM-formalism, we find the relativistic physical momentum operator and compute its standard deviation for wave functions confined to a geodesic ball on a spacelike hypersurface.
arXiv Detail & Related papers (2021-11-30T17:21:49Z) - Generalized uncertainty principle or curved momentum space? [0.0]
Curved momentum space is at the heart of similar applications such as doubly special relativity.
We introduce a duality between theories yielding generalized uncertainty principles and quantum mechanics on nontrivial momentum space.
We explicitly derive the vielbein corresponding to a generic generalized uncertainty principle in $d$ dimensions.
arXiv Detail & Related papers (2021-10-21T11:26:36Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum interference in external gravitational fields beyond General
Relativity [0.0]
We study the phenomenon of quantum interference in the presence of external gravitational fields.
In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm-Aharonov effect.
On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial role.
arXiv Detail & Related papers (2021-04-22T16:11:42Z) - Multiple uncertainty relation for accelerated quantum information [8.598192865991367]
We demonstrate a relativistic protocol of an uncertainty game in the presence of localized fermionic quantum fields inside cavities.
A novel lower bound for entropic uncertainty relations with multiple quantum memories is given in terms of the Holevo quantity.
arXiv Detail & Related papers (2020-04-21T03:29:39Z) - On the decoherence effect of a stochastic gravitational perturbation on
scalar matter and the possibility of its interferometric detection [0.0]
We show how the master equation reproduces the results present in the literature by taking appropriate limits.
We apply our model to a matter wave experiment, providing a formula for determining the magnitude of gravitational decoherence.
arXiv Detail & Related papers (2019-12-29T21:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.