Continuous-Variable Entanglement through Central Forces: Application to
Gravity between Quantum Masses
- URL: http://arxiv.org/abs/2206.12897v3
- Date: Thu, 11 May 2023 14:38:14 GMT
- Title: Continuous-Variable Entanglement through Central Forces: Application to
Gravity between Quantum Masses
- Authors: Ankit Kumar, Tanjung Krisnanda, P. Arumugam, and Tomasz Paterek
- Abstract summary: We show that entanglement in such experiments is sensitive to initial relative momentum only when the system evolves into non-Gaussian states.
From a quantum information perspective, the results find applications as a momentum witness of non-Gaussian entanglement.
- Score: 4.362023116605902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a complete method for a precise study of gravitational
interaction between two nearby quantum masses. Since the displacements of these
masses are much smaller than the initial separation between their centers, the
displacement-to-separation ratio is a natural parameter in which the
gravitational potential can be expanded. We show that entanglement in such
experiments is sensitive to initial relative momentum only when the system
evolves into non-Gaussian states, i.e., when the potential is expanded at least
up to the cubic term. A pivotal role of force gradient as the dominant
contributor to position-momentum correlations is demonstrated. We establish a
closed-form expression for the entanglement gain, which shows that the
contribution from the cubic term is proportional to momentum and from the
quartic term is proportional to momentum squared. From a quantum information
perspective, the results find applications as a momentum witness of
non-Gaussian entanglement. Our methods are versatile and apply to any number of
central interactions expanded to any order.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Quantum entanglement of masses with non-local gravitational interaction [0.0]
We consider an energy-momentum tensor describing two test particles of equal mass with each possessing some non-zero momentum.
We find that the change in the gravitational energy due to the self-interaction terms is finite.
We study the quantum gravity induced entanglement of masses for two different scenarios.
arXiv Detail & Related papers (2023-03-30T18:14:28Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Semiclassical spacetimes at super-Planckian scales from delocalized
sources [0.0]
We derive the gravitational field and the spacetime metric generated by sources in quantum superposition of different locations.
We find three classes of quantum effective metrics which are all flat and reproduce the Schwarzschild metric at great distances.
arXiv Detail & Related papers (2022-11-03T09:01:22Z) - Conditions for graviton emission in the recombination of a delocalized
mass [91.3755431537592]
In a known gedanken experiment, a delocalized mass is recombined while the gravitational field sourced by it is probed by another (distant) particle.
Here, we focus on the delocalized particle and explore the conditions (in terms of mass, separation, and recombination time) for graviton emission.
arXiv Detail & Related papers (2022-09-21T13:51:27Z) - Superkicks and momentum density tests via micromanipulation [0.0]
There is an unsettled problem in choosing the correct expressions for the local momentum density and angular momentum density of electromagnetic fields.
We show situations where the two predictions can be checked, with numerical estimates of the size of the effects.
arXiv Detail & Related papers (2022-09-01T22:48:26Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Discreteness of Space from Anisotropic Spin-Orbit Interaction [0.0]
Various approaches to Quantum Gravity suggest an existence of a minimal measurable length.
We propose that minimal length can be obtained naturally through spin-orbit interaction.
arXiv Detail & Related papers (2021-04-29T15:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.