論文の概要: A Nature-Inspired Feature Selection Approach based on Hypercomplex
Information
- arxiv url: http://arxiv.org/abs/2101.05652v1
- Date: Thu, 14 Jan 2021 15:05:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 05:32:26.205001
- Title: A Nature-Inspired Feature Selection Approach based on Hypercomplex
Information
- Title(参考訳): 超複雑情報に基づく自然刺激型特徴選択手法
- Authors: Gustavo H. de Rosa, Jo\~ao Paulo Papa, Xin-She Yang
- Abstract要約: 超複合機能選択にメタヒューリスティック最適化フレームワークを導入する。
目的とする超複素特徴選択は、いくつかのメタヒューリスティックアルゴリズムと超複素表現に対してテストされる。
提案手法によって得られた良い結果は,特徴選択研究において有望なツールとなる。
- 参考スコア(独自算出の注目度): 4.733222697135021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection for a given model can be transformed into an optimization
task. The essential idea behind it is to find the most suitable subset of
features according to some criterion. Nature-inspired optimization can mitigate
this problem by producing compelling yet straightforward solutions when dealing
with complicated fitness functions. Additionally, new mathematical
representations, such as quaternions and octonions, are being used to handle
higher-dimensional spaces. In this context, we are introducing a meta-heuristic
optimization framework in a hypercomplex-based feature selection, where
hypercomplex numbers are mapped to real-valued solutions and then transferred
onto a boolean hypercube by a sigmoid function. The intended hypercomplex
feature selection is tested for several meta-heuristic algorithms and
hypercomplex representations, achieving results comparable to some
state-of-the-art approaches. The good results achieved by the proposed approach
make it a promising tool amongst feature selection research.
- Abstract(参考訳): 与えられたモデルの特徴の選択は最適化タスクに変換できる。
その背景にある基本的な考え方は、いくつかの基準に従って最も適切な機能のサブセットを見つけることである。
自然に着想を得た最適化は、複雑な適合関数を扱う際に説得力があるが分かりやすい解決策を作ることでこの問題を軽減できる。
さらに、四元数や八元数といった新しい数学的表現は、高次元空間を扱うために使われている。
この文脈では、超複素数を実数値解にマッピングし、sgmoid関数によってブール超キューブに転送する超複素数に基づく特徴選択にメタヒューリスティック最適化フレームワークを導入する。
意図された超複素機能選択は、いくつかのメタヒューリスティックアルゴリズムと超複素表現でテストされ、いくつかの最先端のアプローチに匹敵する結果が得られる。
提案手法によって得られた良い結果は,特徴選択研究において有望なツールとなる。
関連論文リスト
- Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
特徴の選択は、特に高次元データセットにおいて、機械学習において重要なステップである。
本稿では,LMSSSと呼ばれる探索空間の縮小に基づく大規模多目的進化アルゴリズムを提案する。
提案アルゴリズムの有効性は、15の大規模データセットに対する包括的実験によって実証される。
論文 参考訳(メタデータ) (2024-10-13T23:06:10Z) - Fast Genetic Algorithm for feature selection -- A qualitative approximation approach [5.279268784803583]
本稿では,遺伝的アルゴリズム(GA)を特徴選択に用いることによって生じる計算問題に対処するための,2段階の代理支援進化的アプローチを提案する。
我々はCHCQXがより高速に収束し、特に100K以上のインスタンスを持つ大規模データセットにおいて、非常に高い精度でサブセットソリューションを特徴付けることを示した。
論文 参考訳(メタデータ) (2024-04-05T10:15:24Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
そこで本研究では,多目的最適化問題を優先的精度で解くための対話型遺伝的アルゴリズムを提案する。
我々のアルゴリズムはRIGAと呼ばれ、集約関数がパラメータ内で線形であることから、任意の多目的最適化問題に適用できる。
いくつかのパフォーマンス指標(計算時間、最適性とクエリ数のギャップ)に対して、RIGAは最先端のアルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2023-11-10T13:56:15Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Combining Genetic Programming and Particle Swarm Optimization to
Simplify Rugged Landscapes Exploration [7.25130576615102]
元の関数のスムーズな代理モデルを構築するための新しい手法を提案する。
GP-FST-PSOサロゲートモデル(GP-FST-PSO Surrogate Model)と呼ばれる提案アルゴリズムは,グローバルな最適探索と,元のベンチマーク関数の視覚的近似の生成の両方において満足な結果が得られる。
論文 参考訳(メタデータ) (2022-06-07T12:55:04Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
モデル構築における最適特徴の選択に関する基礎的問題について検討する。
この問題は、greedyアルゴリズムの変種を使用しても、大規模なデータセットで計算的に困難である。
適応クエリモデルは,最近提案された非モジュラー関数に対する直交整合探索のより高速なパラダイムに拡張する。
提案アルゴリズムは、適応型クエリモデルにおいて指数関数的に高速な並列実行を実現する。
論文 参考訳(メタデータ) (2022-02-28T12:26:47Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
我々は,新しいHPO法を導入し,畳み込みネットワークの中間層の低ランク因子分解を用いて解析応答面を定義する方法について検討する。
我々は,この表面がモデル性能の代理としてどのように振る舞うかを定量化し,オートHyperと呼ぶ信頼領域探索アルゴリズムを用いて解くことができる。
論文 参考訳(メタデータ) (2021-11-28T05:27:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。