論文の概要: Combining Genetic Programming and Particle Swarm Optimization to
Simplify Rugged Landscapes Exploration
- arxiv url: http://arxiv.org/abs/2206.03241v1
- Date: Tue, 7 Jun 2022 12:55:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-26 14:46:25.659546
- Title: Combining Genetic Programming and Particle Swarm Optimization to
Simplify Rugged Landscapes Exploration
- Title(参考訳): 遺伝的プログラミングとパーティクルスワーム最適化を組み合わせたランドスケープ探索の簡易化
- Authors: Gloria Pietropolli, Giuliamaria Menara, Mauro Castelli
- Abstract要約: 元の関数のスムーズな代理モデルを構築するための新しい手法を提案する。
GP-FST-PSOサロゲートモデル(GP-FST-PSO Surrogate Model)と呼ばれる提案アルゴリズムは,グローバルな最適探索と,元のベンチマーク関数の視覚的近似の生成の両方において満足な結果が得られる。
- 参考スコア(独自算出の注目度): 7.25130576615102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most real-world optimization problems are difficult to solve with traditional
statistical techniques or with metaheuristics. The main difficulty is related
to the existence of a considerable number of local optima, which may result in
the premature convergence of the optimization process. To address this problem,
we propose a novel heuristic method for constructing a smooth surrogate model
of the original function. The surrogate function is easier to optimize but
maintains a fundamental property of the original rugged fitness landscape: the
location of the global optimum. To create such a surrogate model, we consider a
linear genetic programming approach enhanced by a self-tuning fitness function.
The proposed algorithm, called the GP-FST-PSO Surrogate Model, achieves
satisfactory results in both the search for the global optimum and the
production of a visual approximation of the original benchmark function (in the
2-dimensional case).
- Abstract(参考訳): ほとんどの実世界の最適化問題は、従来の統計技術やメタヒューリスティックスでは解決が難しい。
主な難しさは、かなりの数の局所最適化の存在と関係しており、最適化過程の早期収束をもたらす可能性がある。
そこで本研究では,元の関数のスムーズな代理モデルを構築するための新しいヒューリスティック手法を提案する。
代理関数は最適化が容易であるが、元の頑丈なフィットネスランドスケープの基本的な特性、すなわちグローバルな最適位置を維持している。
このようなサロゲートモデルを作成するために,自己調整型適応関数によって拡張された線形遺伝的プログラミング手法を考える。
GP-FST-PSOサロゲートモデル(GP-FST-PSO Surrogate Model)と呼ばれる提案アルゴリズムは,グローバルな最適探索と,元のベンチマーク関数の視覚的近似(二次元の場合)の生成の両方において,良好な結果が得られる。
関連論文リスト
- Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - Generative Adversarial Model-Based Optimization via Source Critic Regularization [25.19579059511105]
本稿ではアダプティブ・ソース・批評家正規化(aSCR)を用いた生成逆モデルに基づく最適化を提案する。
ASCRは、サロゲート関数が信頼できる設計空間の領域に最適化軌道を制約する。
本稿では,aSCRを標準的なベイズ最適化に活用することにより,オフライン生成設計タスクのスイートにおいて,既存の手法よりも優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2024-02-09T16:43:57Z) - Pseudo-Bayesian Optimization [7.556071491014536]
ブラックボックス最適化の収束を保証するために最小限の要件を課す公理的枠組みについて検討する。
我々は、単純な局所回帰と、不確実性を定量化するために適切な「ランダム化事前」構造を用いることが、収束を保証するだけでなく、常に最先端のベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-15T07:55:28Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Multi-objective robust optimization using adaptive surrogate models for
problems with mixed continuous-categorical parameters [0.0]
ロバスト設計の最適化は、不確実性が主に目的関数に影響を与える場合、伝統的に考慮されている。
結果として生じるネスト最適化問題は、非支配的ソート遺伝的アルゴリズム(NSGA-II)において、汎用的な解法を用いて解決することができる。
提案手法は、適応的に構築されたKrigingモデルを用いて、NSGA-IIを順次実行し、量子を推定する。
論文 参考訳(メタデータ) (2022-03-03T20:23:18Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
本稿では,不確実なプロセスのリアルタイム最適化において,プラントモデルミスマッチを克服するための修飾子適応方式について検討する。
提案したスキームは物理モデルを組み込んでおり、探査中のリスクを最小限に抑えるために信頼領域のアイデアに依存している。
取得関数の使用、プロセスノイズレベルを知る、または名目上のプロセスモデルを指定する利点を図示する。
論文 参考訳(メタデータ) (2020-09-18T12:57:17Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z) - Finding Optimal Points for Expensive Functions Using Adaptive RBF-Based
Surrogate Model Via Uncertainty Quantification [11.486221800371919]
本稿では,適応的放射基底関数 (RBF) を用いた不確実性定量化によるサロゲートモデルを用いた新しいグローバル最適化フレームワークを提案する。
まずRBFに基づくベイズ代理モデルを用いて真の関数を近似し、新しい点が探索されるたびにRBFのパラメータを適応的に推定し更新することができる。
次に、モデル誘導選択基準を用いて、関数評価のための候補セットから新しい点を識別する。
論文 参考訳(メタデータ) (2020-01-19T16:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。