論文の概要: Unsupervised machine learning of topological phase transitions from
experimental data
- arxiv url: http://arxiv.org/abs/2101.05712v2
- Date: Mon, 1 Feb 2021 20:19:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-15 05:05:20.037635
- Title: Unsupervised machine learning of topological phase transitions from
experimental data
- Title(参考訳): 実験データによる位相相転移の教師なし機械学習
- Authors: Niklas K\"aming, Anna Dawid, Korbinian Kottmann, Maciej Lewenstein,
Klaus Sengstock, Alexandre Dauphin, Christof Weitenberg
- Abstract要約: 超低温原子からの実験データに教師なし機械学習技術を適用する。
我々は、完全にバイアスのない方法で、ハルダンモデルの位相位相図を得る。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
- 参考スコア(独自算出の注目度): 52.77024349608834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying phase transitions is one of the key challenges in quantum
many-body physics. Recently, machine learning methods have been shown to be an
alternative way of localising phase boundaries also from noisy and imperfect
data and without the knowledge of the order parameter. Here we apply different
unsupervised machine learning techniques including anomaly detection and
influence functions to experimental data from ultracold atoms. In this way we
obtain the topological phase diagram of the Haldane model in a completely
unbiased fashion. We show that the methods can successfully be applied to
experimental data at finite temperature and to data of Floquet systems, when
postprocessing the data to a single micromotion phase. Our work provides a
benchmark for unsupervised detection of new exotic phases in complex many-body
systems.
- Abstract(参考訳): 相転移の同定は、量子多体物理学における重要な課題の1つである。
近年、機械学習手法は、ノイズや不完全なデータから、順序パラメータの知識がなくても位相境界をローカライズする代替手法であることが示されている。
ここでは,超低温原子からの実験データに対して異常検出や影響関数を含む,教師なしの機械学習手法を適用する。
このようにして、Haldaneモデルの位相位相図は、完全に偏りのない方法で得られる。
本研究では, 有限温度実験データとFloquet システムのデータに対して, 単一マイクロモーション位相に後処理した場合に適用可能であることを示す。
我々の研究は、複雑な多体系における新しいエキゾチック位相の教師なし検出のためのベンチマークを提供する。
関連論文リスト
- Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
単層炭素原子上のシリコン原子の遷移ダイナミクスを機械学習で決定する手法を提案する。
データサンプルは、ニューラルネットワークをトレーニングして遷移確率を予測するために、シンボリック表現を生成するために処理され、フィルタリングされる。
これらの学習された遷移ダイナミクスを利用すれば、格子全体に1つのシリコン原子を誘導し、あらかじめ決定された目標目的地へと導くことができる。
論文 参考訳(メタデータ) (2023-11-21T21:51:00Z) - Binary Quantification and Dataset Shift: An Experimental Investigation [54.14283123210872]
量子化は教師付き学習タスクであり、未学習データの集合のクラス有病率の予測器を訓練する。
定量化と他のタイプのデータセットシフトの関係は、いまだ大きく、未調査のままである。
本稿では,これらのシフトに影響を受けるデータセットの生成プロトコルを確立することにより,データセットシフトの種類を詳細に分類する手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T20:11:27Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
最大70個の超伝導量子ビット上の測定誘起量子情報相について検討した。
二重性マッピングを用いて、中間回路の測定を回避し、基礎となる位相の異なる表現にアクセスする。
我々の研究は、現在のNISQプロセッサの限界であるスケールでの計測誘起物理を実現するためのアプローチを示す。
論文 参考訳(メタデータ) (2023-03-08T18:41:53Z) - Unsupervised Interpretable Learning of Phases From Many-Qubit Systems [2.4352963290061993]
短距離多ビット系を理解するために,教師なしの機械学習技術を用いる方法を示す。
我々の研究は、教師なしの強い解釈性を目指して、ハイブリッドアルゴリズムを第一原理で適用するための扉を開く。
論文 参考訳(メタデータ) (2022-08-18T14:35:28Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
本稿では, コールド・ライドバーグ型原子を用いた光学格子の量子シミュレーションの現実的シナリオについて検討する。
本研究では, 平均場近似において, 半次および非共役充填時の位相図の詳細な解析を行う。
さらに、平均場近似における温度に対する相の安定性について検討する。
論文 参考訳(メタデータ) (2022-03-28T14:55:28Z) - Unsupervised and supervised learning of interacting topological phases
from single-particle correlation functions [0.0]
本研究では、教師なしおよび教師なしの機械学習技術が、解決可能なモデルのデータに基づいて訓練された場合、正確には解決不可能なモデルのフェーズを予測することができることを示す。
特に,非相互作用量子ワイヤの単一粒子相関関数を用いたトレーニングセットを用いる。
非相互作用モデルのデータに基づいてトレーニングされた主成分分析と畳み込みニューラルネットワークの両方が、相互作用モデルの位相位相を高い精度で識別できることを示す。
論文 参考訳(メタデータ) (2022-02-18T16:02:29Z) - Detection of Berezinskii-Kosterlitz-Thouless transition via Generative
Adversarial Networks [0.0]
システム分割の絡み合いスペクトルを用いてGAN(Geneversarative Adrial Network)を訓練する。
異なる1次元モデルでギャップのない位相遷移を同定することができる。
論文 参考訳(メタデータ) (2021-10-11T16:19:17Z) - Unsupervised phase discovery with deep anomaly detection [0.0]
我々は、自動化された教師なし機械学習を用いてフェーズダイアグラムを探索する方法を実証する。
私たちは、完全に教師なしかつ自動化された方法で、フェーズダイアグラム全体を決定するために、ディープニューラルネットワークを使用します。
提案手法により, 予期せぬ特性を有する超固相と超流動相の相分離領域を明らかにすることができる。
論文 参考訳(メタデータ) (2020-03-22T14:20:04Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
本研究では, 測定データの非線形次元減少とスペクトルクラスタリングを行う拡散写像法が, 教師なしの複雑な位相遷移を学習する上で有意なポテンシャルを持つことを示す。
この方法は、局所観測可能量の単一の基底での測定に役立ち、多くの実験的な量子シミュレータに容易に適用できる。
論文 参考訳(メタデータ) (2020-03-16T18:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。