論文の概要: DeepWaste: Applying Deep Learning to Waste Classification for a
Sustainable Planet
- arxiv url: http://arxiv.org/abs/2101.05960v1
- Date: Fri, 15 Jan 2021 04:06:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 11:18:21.518708
- Title: DeepWaste: Applying Deep Learning to Waste Classification for a
Sustainable Planet
- Title(参考訳): DeepWaste: 持続可能な惑星の分類にディープラーニングを適用する
- Authors: Yash Narayan
- Abstract要約: 誤った廃棄物処理を減らそうとする試みは、高価で不正確で混乱している。
我々は,高度に最適化されたディープラーニング技術を利用して,廃棄物をゴミ,リサイクル,コンポストに即時分類するモバイルアプリDeepWasteを提案する。
我々の最良のモデルは、50層からなるディープラーニング残留ニューラルネットワークであり、テストセットの平均精度は0.881である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate waste disposal, at the point of disposal, is crucial to fighting
climate change. When materials that could be recycled or composted get diverted
into landfills, they cause the emission of potent greenhouse gases such as
methane. Current attempts to reduce erroneous waste disposal are expensive,
inaccurate, and confusing. In this work, we propose DeepWaste, an easy-to-use
mobile app, that utilizes highly optimized deep learning techniques to provide
users instantaneous waste classification into trash, recycling, and compost. We
experiment with several convolution neural network architectures to detect and
classify waste items. Our best model, a deep learning residual neural network
with 50 layers, achieves an average precision of 0.881 on the test set. We
demonstrate the performance and efficiency of our app on a set of real-world
images.
- Abstract(参考訳): 正確な廃棄物処理は、廃棄の観点からは、気候変動対策に不可欠である。
リサイクルやコンポスト化できる物質が埋立地に流用されると、メタンのような強力な温室効果ガスが排出される。
誤った廃棄物処理を減らす試みは、高価で不正確で混乱している。
本研究では,高度に最適化されたディープラーニング技術を利用して,廃棄物をゴミ,リサイクル,コンポストに即時分類する,使いやすいモバイルアプリDeepWasteを提案する。
我々は,複数の畳み込みニューラルネットワークアーキテクチャを用いて,廃棄物の検出と分類を行う。
我々の最良のモデルは、50層からなるディープラーニング残留ニューラルネットワークであり、テストセットの平均精度は0.881である。
実世界の画像に対して,アプリケーションの性能と効率を実証する。
関連論文リスト
- MWaste: A Deep Learning Approach to Manage Household Waste [0.0]
MWasteはコンピュータビジョンとディープラーニング技術を使って廃棄物をゴミ、プラスチック、紙、金属、ガラス、段ボールに分類するモバイルアプリケーションだ。
その効果は、さまざまなニューラルネットワークアーキテクチャや実世界の画像でテストされ、テストセットの平均精度は92%に達した。
論文 参考訳(メタデータ) (2023-04-02T16:56:49Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
複雑な実世界の環境でエージェントを訓練することは、桁違いに高速であることを示す。
強化学習の手法を新しい領域に適用することにより、興味深く非自明な解を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-11-23T19:17:20Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
本稿では,CycleGANに基づくディープネットワークの監視手法について述べる。
我々は,より効果的なトレーニングにつながるCycleGANのトレーニングに新たな損失を導入し,高品質な再構築を実現した。
提案手法は, 脱落, 脱落, 脱落といった様々な修復作業に効果的に適用できることを実証する。
論文 参考訳(メタデータ) (2022-04-23T01:30:47Z) - A Method for Waste Segregation using Convolutional Neural Networks [0.0]
本稿では, 廃棄物分類の問題を解決するために, ディープラーニングアルゴリズムを用いた手法を提案する。
提案手法の精度は94.9%である。
論文 参考訳(メタデータ) (2022-02-23T14:32:10Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
オフラインデータセットを使用してファクタードトランジションモデルを学習するトレーニング目標を提案する。
我々の理論的分析は、学習された潜在行動空間が下流模倣学習のサンプル効率を高めることを示唆している。
実際に潜伏行動空間を学習するために、エネルギーベースの遷移モデルを学ぶアルゴリズムTRAIL(Transition-Reparametrized Actions for Imitation Learning)を提案する。
論文 参考訳(メタデータ) (2021-10-27T21:05:00Z) - Classification of PS and ABS Black Plastics for WEEE Recycling
Applications [63.942632088208505]
本研究の目的は,ポリスチレン (PS) 型とアクリロニトリルブタジエン (ABS) 型の黒色プラスチックを用いて,異なる種類のプラスチックを分類できるシステムを作ることである。
畳み込みニューラルネットワークのテストと再訓練が行われ、95%の精度が得られた。
別個のテストセットを使用して平均精度は86.6%まで低下するが、結果を見てみるとABS型が100%正確に分類されていることが分かるため、すべてのエラーを蓄積するPS型である。
論文 参考訳(メタデータ) (2021-10-20T12:47:18Z) - AI Based Waste classifier with Thermo-Rapid Composting [0.0]
コンピュータビジョン(CV)と深層学習(DL)を用いた新しい廃棄物分類手法を提案する。
コンポスト化Berkley法(BKC)による生分解性廃棄物の分解
論文 参考訳(メタデータ) (2021-08-03T10:06:19Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
産業レベルの廃棄物検出・分別データセットZeroWasteについて述べる。
このデータセットには、実際の廃棄物処理工場から収集された1800以上のビデオフレームが含まれている。
最先端のセグメンテーション手法では,対象物を正しく検出・分類することが困難であることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:17:09Z) - Towards Unpaired Depth Enhancement and Super-Resolution in the Wild [121.96527719530305]
最先端のデータ駆動による深度マップの超解像法は、同じシーンの低解像度と高解像度の深度マップの登録ペアに依存している。
未経験データからの学習に基づく深度マップの強化について考察する。
論文 参考訳(メタデータ) (2021-05-25T16:19:16Z) - Comparative Analysis of Multiple Deep CNN Models for Waste
Classification [0.0]
このプロジェクトはよく知られたDeep Learning Networkアーキテクチャを、独自の取り組みとTrush Netを組み合わせたデータセットによる廃棄物分類でテストした。
ダストビンの形で作られたハードウェアは、それらの廃棄物を異なる区画に分離するために使用される。
論文 参考訳(メタデータ) (2020-04-05T11:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。