論文の概要: Context, input and process as critical elements for successful Emergency
Remote Learning
- arxiv url: http://arxiv.org/abs/2101.06112v1
- Date: Wed, 6 Jan 2021 11:36:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 17:30:57.930342
- Title: Context, input and process as critical elements for successful Emergency
Remote Learning
- Title(参考訳): 緊急遠隔学習成功のための重要な要素としてのコンテキスト・入力・プロセス
- Authors: Luciana Oliveira, Anabela Mesquita, Arminda Sequeira, Adriana Oliveira
and Paulino Silva
- Abstract要約: 2020年春、世界は伝統的なクラスからERL(Emergency Remote Teaching, Learning, Instruction)と呼ばれるものに移行した。
しかし、この移行の影響は教育レベルでのみ研究することはできない。
46変数の相関分析は、学習のイネーブラーや制約要因として、オンライン授業におけるモチベーションとエンゲージメントの重要な重要性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Spring 2020, the world moved from traditional classes to what was coined
as ERL (Emergency Remote Teaching, Learning, Instruction), posing real
challenges to all actors involved, requiring an immediate, unprecedented, and
unplanned devising of mitigation strategies. The impacts of this transition
cannot, however, be studied only at the educational level, as it consists of a
broader social shift with multidomain repercussions. In this paper, we use the
CIPP model (Context, Input, Process and Product evaluations) to further
investigate interrelations among the context, input and process elements of ERL
during the first wave of COVID-19, as the second wave presses towards
reconfining. A correlation analysis of 46 variables, based students responses
(N=360) to a closed-ended questionnaire shows the crucial importance of
motivation and engagement in online classes, as learning enablers or
constrainers. These also shape the students perception of the role that online
classes play in helping them to stay more positive during ERL.
- Abstract(参考訳): 2020年春、世界は伝統的な階級からERL(Emergency Remote Teaching, Learning, Instruction)と呼ばれるものへと移行し、即時的で前例のない緩和戦略の策定を必要とする全てのアクターに真の課題を提起した。
しかし、この移行の影響は教育レベルでのみ研究することはできない。
本稿では,CIPPモデル(コンテキスト,入力,プロセス,製品評価)を用いて,第2波が再定義を迫る第1波におけるERLのコンテキスト,入力,プロセス要素間の相互関係について検討する。
閉ざされた質問紙に対する46変数, 学生回答(N=360)の相関分析により, オンライン授業におけるモチベーションとエンゲージメントの重要性が示唆された。
これはまた、オンライン授業がERLの間、よりポジティブな状態を保つ上で果たす役割に対する学生の認識を形作っている。
関連論文リスト
- A Survey On Enhancing Reinforcement Learning in Complex Environments: Insights from Human and LLM Feedback [1.0359008237358598]
本稿では、まず、人間やLSMの補助に焦点をあて、これらの実体が最適な行動の促進と学習の迅速化のためにRLエージェントと協調する方法について検討し、また、大きな観測空間によって特徴づけられる環境の複雑さに対処する研究論文を探索する。
論文 参考訳(メタデータ) (2024-11-20T15:52:03Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework
with Causal-Aware Policy [40.33036146207819]
我々は、図形因果モデルを用いて、状態の生成過程を明示的にモデル化することを検討する。
我々は、環境のアクティブな介入学習とRL相互作用プロセスに更新する因果構造を定式化する。
論文 参考訳(メタデータ) (2024-02-07T14:09:34Z) - Demonstration-free Autonomous Reinforcement Learning via Implicit and
Bidirectional Curriculum [22.32327908453603]
Indicit and Bi-directional Curriculum (IBC) を用いた実証自由強化学習アルゴリズムを提案する。
学習の進捗に応じて条件付きで活性化される補助エージェントと、最適輸送に基づく双方向ゴールカリキュラムにより、本手法は従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-17T04:31:36Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
人間や動物が行うような現実世界の具体的学習は、連続的で非エポゾディックな世界にある。
RLの一般的なベンチマークタスクはエピソジックであり、試行錯誤によってエージェントに複数の試行を行う環境がリセットされる。
この相違は、擬似環境向けに開発されたRLアルゴリズムを現実世界のプラットフォーム上で実行しようとする場合、大きな課題となる。
論文 参考訳(メタデータ) (2021-12-17T16:28:06Z) - Causal Reinforcement Learning using Observational and Interventional
Data [14.856472820492364]
環境の因果モデルを効率的に学習することは、PMDPで動作するモデルRLエージェントの重要な課題である。
学習エージェントが環境と直接対話することでオンライン体験を収集できるシナリオを考察する。
オンラインとオフラインのエクスペリエンスは、因果モデルを学ぶために安全に組み合わせられるか?
論文 参考訳(メタデータ) (2021-06-28T06:58:20Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
多くの実世界の模倣学習タスクでは、デモレーターと学習者は異なるが完全な観察空間で行動しなければならない。
本研究では、上記の学習問題を異種観察学習(HOIL)としてモデル化する。
本稿では,重要度重み付け,拒否学習,アクティブクエリに基づくIWREアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-17T05:44:04Z) - Towards Continual Reinforcement Learning: A Review and Perspectives [69.48324517535549]
我々は,連続的強化学習(RL)に対する異なる定式化とアプローチの文献レビューの提供を目的とする。
まだ初期段階だが、継続的なrlの研究は、よりインクリメンタルな強化学習者を開発することを約束している。
これには、医療、教育、物流、ロボット工学などの分野の応用が含まれる。
論文 参考訳(メタデータ) (2020-12-25T02:35:27Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
我々は、複数の関連するタスクから共通の機能の集合を学習し、その知識を新しい未知のタスクに転送する、という2つの課題に対処する、高速でサンプル効率のアルゴリズムを提供する。
また、これらの線形特徴を学習する際のサンプルの複雑さに関する情報理論の下限も提供する。
論文 参考訳(メタデータ) (2020-02-26T18:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。