論文の概要: Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.20534v1
- Date: Thu, 30 May 2024 23:20:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 16:05:36.885076
- Title: Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning
- Title(参考訳): Aquatic Navigation: 深層強化学習のためのベンチマーク
- Authors: Davide Corsi, Davide Camponogara, Alessandro Farinelli,
- Abstract要約: ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
- 参考スコア(独自算出の注目度): 53.3760591018817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An exciting and promising frontier for Deep Reinforcement Learning (DRL) is its application to real-world robotic systems. While modern DRL approaches achieved remarkable successes in many robotic scenarios (including mobile robotics, surgical assistance, and autonomous driving) unpredictable and non-stationary environments can pose critical challenges to such methods. These features can significantly undermine fundamental requirements for a successful training process, such as the Markovian properties of the transition model. To address this challenge, we propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and DRL. In more detail, we show that our benchmarking environment is problematic even for state-of-the-art DRL approaches that may struggle to generate reliable policies in terms of generalization power and safety. Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques (such as curriculum learning and learnable hyperparameters). Our extensive empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results. Our simulation environment and training baselines are freely available to facilitate further research on this open problem and encourage collaboration in the field.
- Abstract(参考訳): Deep Reinforcement Learning(DRL)のエキサイティングで有望なフロンティアは、現実世界のロボットシステムへの応用である。
現代のDRLアプローチは、多くのロボットシナリオ(移動ロボット、外科支援、自律運転など)で顕著な成功を収めているが、予測不可能で非定常環境はそのような手法に重大な課題をもたらす可能性がある。
これらの特徴は、移行モデルのマルコフ的特性のような、成功したトレーニングプロセスの基本的な要件を著しく損なう可能性がある。
この課題に対処するために,ゲームエンジンとDRLの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
より詳しくは、我々のベンチマーク環境は、一般化力と安全性の観点から信頼性の高いポリシーを生成するのに苦労する最先端のDRLアプローチであっても問題であることを示す。
具体的には,最も広く受け入れられているアルゴリズムの一つであるPPOに着目し,カリキュラム学習や学習可能なハイパーパラメータなどの高度なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることを示す。
我々のシミュレーション環境とトレーニングベースラインは自由に利用でき、このオープンな問題についてさらなる研究を促進し、現場でのコラボレーションを促進することができる。
関連論文リスト
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - ReProHRL: Towards Multi-Goal Navigation in the Real World using
Hierarchical Agents [1.3194749469702445]
本稿では、強化学習によって誘導される階層的マルチゴールナビゲーションでタスクを分割する生産階層RL(ReProHRL)について述べる。
また、物体検出装置を前処理のステップとして使用して、マルチゴールナビゲーションを学習し、それを現実世界に転送する。
実世界の実装と概念実証のために,提案手法をフロントカメラを用いたナノドローンCrzyflieに展開する。
論文 参考訳(メタデータ) (2023-08-17T02:23:59Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。