Hybrid Quantum-Classical Graph Convolutional Network
- URL: http://arxiv.org/abs/2101.06189v1
- Date: Fri, 15 Jan 2021 16:02:52 GMT
- Title: Hybrid Quantum-Classical Graph Convolutional Network
- Authors: Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, Shinjae
Yoo
- Abstract summary: This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data.
The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters.
In terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset.
- Score: 7.0132255816377445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high energy physics (HEP) community has a long history of dealing with
large-scale datasets. To manage such voluminous data, classical machine
learning and deep learning techniques have been employed to accelerate physics
discovery. Recent advances in quantum machine learning (QML) have indicated the
potential of applying these techniques in HEP. However, there are only limited
results in QML applications currently available. In particular, the challenge
of processing sparse data, common in HEP datasets, has not been extensively
studied in QML models. This research provides a hybrid quantum-classical graph
convolutional network (QGCNN) for learning HEP data. The proposed framework
demonstrates an advantage over classical multilayer perceptron and
convolutional neural networks in the aspect of number of parameters. Moreover,
in terms of testing accuracy, the QGCNN shows comparable performance to a
quantum convolutional neural network on the same HEP dataset while requiring
less than $50\%$ of the parameters. Based on numerical simulation results,
studying the application of graph convolutional operations and other QML models
may prove promising in advancing HEP research and other scientific fields.
Related papers
- Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
We develop a free hybrid quantum gradient classical convoluted graph neural network to predict formation energies of perovskite materials.
Our study suggests a new pathway to explore how quantum feature encoding and parametric quantum circuits can yield drastic improvements of complex machine learning algorithms.
arXiv Detail & Related papers (2024-05-08T16:43:25Z) - Training Classical Neural Networks by Quantum Machine Learning [9.002305736350833]
This work proposes a training scheme for classical neural networks (NNs) that utilizes the exponentially large Hilbert space of a quantum system.
Unlike existing quantum machine learning (QML) methods, the results obtained from quantum computers using our approach can be directly used on classical computers.
arXiv Detail & Related papers (2024-02-26T10:16:21Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
We prove that a classical-to-quantum transfer learning architecture using a Variational Quantum Circuit (VQC) improves the representation and generalization (estimation error) capabilities of the VQC model.
We show that the architecture of classical-to-quantum transfer learning leverages pre-trained classical generative AI models, making it easier to find the optimal parameters for the VQC in the training stage.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification [0.7232471205719458]
We build new machine learning models which explicitly respect the symmetries inherent in their data, so-called geometric quantum machine learning (GQML)
We find that these networks are capable of consistently and significantly outperforming generic ansatze on complicated real-world image datasets.
arXiv Detail & Related papers (2022-12-01T04:10:26Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Subtleties in the trainability of quantum machine learning models [0.0]
We show that gradient scaling results for Variational Quantum Algorithms can be applied to study the gradient scaling of Quantum Machine Learning models.
Our results indicate that features deemed detrimental for VQA trainability can also lead to issues such as barren plateaus in QML.
arXiv Detail & Related papers (2021-10-27T20:28:53Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Generative Adversarial Networks in a Continuous-Variable
Architecture to Simulate High Energy Physics Detectors [0.0]
We introduce and analyze a new prototype of quantum GAN (qGAN) employed in continuous-variable quantum computing.
Two CV qGAN models with a quantum and a classical discriminator have been tested to reproduce calorimeter outputs in a reduced size.
arXiv Detail & Related papers (2021-01-26T23:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.