Quantum Neural Networks for Wind Energy Forecasting: A Comparative Study of Performance and Scalability with Classical Models
- URL: http://arxiv.org/abs/2506.22845v1
- Date: Sat, 28 Jun 2025 10:51:27 GMT
- Title: Quantum Neural Networks for Wind Energy Forecasting: A Comparative Study of Performance and Scalability with Classical Models
- Authors: Batuhan Hangun, Oguz Altun, Onder Eyecioglu,
- Abstract summary: Quantum Neural Networks (QNNs) are emerging as a powerful alternative to classical machine learning methods.<n>This study provides an in-depth investigation of QNNs for predicting the power output of a wind turbine.<n>We experimentally demonstrate that QNNs can achieve predictive performance that is competitive with, and in some cases marginally better than, the benchmarked classical approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Neural Networks (QNNs), a prominent approach in Quantum Machine Learning (QML), are emerging as a powerful alternative to classical machine learning methods. Recent studies have focused on the applicability of QNNs to various tasks, such as time-series forecasting, prediction, and classification, across a wide range of applications, including cybersecurity and medical imaging. With the increased use of smart grids driven by the integration of renewable energy systems, machine learning plays an important role in predicting power demand and detecting system disturbances. This study provides an in-depth investigation of QNNs for predicting the power output of a wind turbine. We assess the predictive performance and simulation time of six QNN configurations that are based on the Z Feature Map for data encoding and varying ansatz structures. Through detailed cross-validation experiments and tests on an unseen hold-out dataset, we experimentally demonstrate that QNNs can achieve predictive performance that is competitive with, and in some cases marginally better than, the benchmarked classical approaches. Our results also reveal the effects of dataset size and circuit complexity on predictive performance and simulation time. We believe our findings will offer valuable insights for researchers in the energy domain who wish to incorporate quantum machine learning into their work.
Related papers
- Comparative Analysis of QNN Architectures for Wind Power Prediction: Feature Maps and Ansatz Configurations [0.0]
Quantum Machine Learning (QML) aims to enhance classical machine learning methods by leveraging quantum mechanics principles such as entanglement and superposition.<n>This study extensively assesses Quantum Neural Networks (QNNs)-quantum-inspired counterparts of Artificial Neural Networks (ANNs)<n>We show that QNNs outperform classical methods in predictive tasks, underscoring the potential of QML in real-world applications.
arXiv Detail & Related papers (2025-05-31T19:17:53Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Benchmarking Quantum Surrogate Models on Scarce and Noisy Data [4.3956739705582635]
We show that quantum neural networks (QNNs) have the potential to outperform their classical analogs in the presence of scarce and noisy data.
Our contribution displays the first application-centered approach of using QNNs as surrogate models on higher dimensional, real world data.
arXiv Detail & Related papers (2023-06-08T08:49:58Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Efficient and quantum-adaptive machine learning with fermion neural
networks [8.537841858846082]
We propose fermion neural networks (FNNs) whose physical properties serve as outputs, once the inputs are incorporated as an initial layer.
We establish an efficient optimization, which entitles FNNs to competitive performance on challenging machine-learning benchmarks.
arXiv Detail & Related papers (2022-11-10T19:00:02Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
The hybrid QCNNs enrich the classical architecture of CNNs by introducing a quantum layer within a standard neural network.
The novel QCNN proposed in this work is applied to the Land Use and Land Cover (LULC) classification, chosen as an Earth Observation (EO) use case.
The results of the multiclass classification prove the effectiveness of the presented approach, by demonstrating that the QCNN performances are higher than the classical counterparts.
arXiv Detail & Related papers (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data.
The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters.
In terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset.
arXiv Detail & Related papers (2021-01-15T16:02:52Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.