Hierarchical Reinforcement Learning By Discovering Intrinsic Options
- URL: http://arxiv.org/abs/2101.06521v2
- Date: Thu, 11 Mar 2021 00:31:24 GMT
- Title: Hierarchical Reinforcement Learning By Discovering Intrinsic Options
- Authors: Jesse Zhang, Haonan Yu, Wei Xu
- Abstract summary: HIDIO can learn task-agnostic options in a self-supervised manner while jointly learning to utilize them to solve sparse-reward tasks.
In experiments on sparse-reward robotic manipulation and navigation tasks, HIDIO achieves higher success rates with greater sample efficiency.
- Score: 18.041140234312934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hierarchical reinforcement learning method, HIDIO, that can
learn task-agnostic options in a self-supervised manner while jointly learning
to utilize them to solve sparse-reward tasks. Unlike current hierarchical RL
approaches that tend to formulate goal-reaching low-level tasks or pre-define
ad hoc lower-level policies, HIDIO encourages lower-level option learning that
is independent of the task at hand, requiring few assumptions or little
knowledge about the task structure. These options are learned through an
intrinsic entropy minimization objective conditioned on the option
sub-trajectories. The learned options are diverse and task-agnostic. In
experiments on sparse-reward robotic manipulation and navigation tasks, HIDIO
achieves higher success rates with greater sample efficiency than regular RL
baselines and two state-of-the-art hierarchical RL methods.
Related papers
- MENTOR: Guiding Hierarchical Reinforcement Learning with Human Feedback
and Dynamic Distance Constraint [40.3872201560003]
Hierarchical reinforcement learning (HRL) uses a hierarchical framework that divides tasks into subgoals and completes them sequentially.
Current methods struggle to find suitable subgoals for ensuring a stable learning process.
We propose a general hierarchical reinforcement learning framework incorporating human feedback and dynamic distance constraints.
arXiv Detail & Related papers (2024-02-22T03:11:09Z) - Hierarchical Continual Reinforcement Learning via Large Language Model [15.837883929274758]
Hi-Core is designed to facilitate the transfer of high-level knowledge.
It orchestrates a twolayer structure: high-level policy formulation by a large language model (LLM)
Hi-Core has demonstrated its effectiveness in handling diverse CRL tasks, which outperforms popular baselines.
arXiv Detail & Related papers (2024-01-25T03:06:51Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks.
We show that Quality Diversity (QD) methods are a competitive alternative to information-theory-augmented RL for skill discovery.
arXiv Detail & Related papers (2022-10-06T11:06:39Z) - Matching options to tasks using Option-Indexed Hierarchical
Reinforcement Learning [20.85397773933171]
We propose a novel option indexing approach to hierarchical learning (OI-HRL)
This allows us to effectively reuse a large library of pretrained options, in zero-shot generalization at test time.
We develop a meta-training loop that learns the representations of options and environments over a series of HRL problems.
arXiv Detail & Related papers (2022-06-12T14:39:02Z) - Hierarchical Reinforcement Learning with Timed Subgoals [11.758625350317274]
We introduce Hierarchical reinforcement learning with Timed Subgoals (HiTS)
HiTS enables the agent to adapt its timing to a dynamic environment by specifying what goal state is to be reached and also when.
Experiments show that our method is capable of sample-efficient learning where an existing state-of-the-art subgoal-based HRL method fails to learn stable solutions.
arXiv Detail & Related papers (2021-12-06T15:11:19Z) - Hierarchical Skills for Efficient Exploration [70.62309286348057]
In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration.
Prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design.
We propose a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner.
arXiv Detail & Related papers (2021-10-20T22:29:32Z) - Discovery of Options via Meta-Learned Subgoals [59.2160583043938]
Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster.
We introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments.
arXiv Detail & Related papers (2021-02-12T19:50:40Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z) - Hierarchical Reinforcement Learning as a Model of Human Task
Interleaving [60.95424607008241]
We develop a hierarchical model of supervisory control driven by reinforcement learning.
The model reproduces known empirical effects of task interleaving.
The results support hierarchical RL as a plausible model of task interleaving.
arXiv Detail & Related papers (2020-01-04T17:53:28Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.