論文の概要: LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving
- arxiv url: http://arxiv.org/abs/2101.06547v1
- Date: Sat, 16 Jan 2021 23:19:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 04:37:47.930176
- Title: LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving
- Title(参考訳): LookOut: 多様なマルチフューチャー予測と自動運転計画
- Authors: Alexander Cui, Abbas Sadat, Sergio Casas, Renjie Liao, Raquel Urtasun
- Abstract要約: LookOutは、環境を共同で知覚し、センサーデータから様々な未来を予測するアプローチである。
本モデルでは,大規模自動運転データセットにおいて,より多様性があり,サンプル効率のよい動き予測を行う。
- 参考スコア(独自算出の注目度): 139.33800431159446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-driving vehicles need to anticipate a diverse set of future traffic
scenarios in order to safely share the road with other traffic participants
that may exhibit rare but dangerous driving. In this paper, we present LookOut,
an approach to jointly perceive the environment and predict a diverse set of
futures from sensor data, estimate their probability, and optimize a
contingency plan over these diverse future realizations. In particular, we
learn a diverse joint distribution over multi-agent future trajectories in a
traffic scene that allows us to cover a wide range of future modes with high
sample efficiency while leveraging the expressive power of generative models.
Unlike previous work in diverse motion forecasting, our diversity objective
explicitly rewards sampling future scenarios that require distinct reactions
from the self-driving vehicle for improved safety. Our contingency planner then
finds comfortable trajectories that ensure safe reactions to a wide range of
future scenarios. Through extensive evaluations, we show that our model
demonstrates significantly more diverse and sample-efficient motion forecasting
in a large-scale self-driving dataset as well as safer and more comfortable
motion plans in long-term closed-loop simulations than current state-of-the-art
models.
- Abstract(参考訳): 自動運転車は、希少だが危険な運転を示す他の交通参加者と安全に道路を共有するために、さまざまな将来の交通シナリオを予測する必要がある。
本稿では,環境を総合的に認識し,センサデータから多様な未来を予測し,その確率を推定し,これら多様な未来を実現するためのコンティンジェンシー・プランを最適化する手法であるルックアウトを提案する。
特に,多エージェント未来トラジェクタを用いた多種多様なジョイント分布を交通シーンで学習し,生成モデルの表現力を活用して,多種多様な未来モードを高いサンプル効率でカバーすることを可能にする。
多様な動き予測におけるこれまでの作業とは異なり、当社の多様性は、安全性を向上させるために自動運転車と異なる反応を必要とする将来のシナリオのサンプリングに明確に報いる。
我々の緊急プランナーは、幅広い将来のシナリオに対して安全な反応を保証する快適な軌道を見つける。
提案手法は,大規模自動運転データセットにおいて,より多様でサンプル効率の良い動作予測を行うとともに,現在の最先端モデルよりも長期閉ループシミュレーションにおいて,より安全で快適な動作計画を示す。
関連論文リスト
- FutureNet-LOF: Joint Trajectory Prediction and Lane Occupancy Field Prediction with Future Context Encoding [10.188379670636092]
本稿では,最初に予測された軌道を将来のシナリオに明示的に統合するFutureNetを提案する。
また、自律走行における動き予測のための車線意味論を用いた新しい表現である車線占有場(LOF)を提案する。
提案手法は,Argoverse 1 と Argoverse 2 の2つの大規模動き予測ベンチマークにおいて第1位である。
論文 参考訳(メタデータ) (2024-06-20T15:41:53Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
自動運転車の安全かつ効率的な運転には、交通参加者の将来の軌跡を予測する能力が不可欠である。
本稿では,多エージェント軌道予測のための拡散モデルを提案する。
このモデルは、交通参加者と環境の間の複雑な相互作用を捉え、データのマルチモーダルな性質を正確に学習することができる。
論文 参考訳(メタデータ) (2024-03-18T10:35:15Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - Multimodal Manoeuvre and Trajectory Prediction for Automated Driving on
Highways Using Transformer Networks [5.571793666361683]
本稿では,複数の動作モードとその可能性を予測するための,新しいマルチモーダル予測フレームワークを提案する。
提案フレームワークは,マルチモーダルな操作および軌道予測のための調整されたトレーニング手法と,新しいトランスフォーマーに基づく予測モデルを含む。
その結果,我々のフレームワークは予測誤差の観点から,最先端のマルチモーダル手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-28T16:25:16Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
人間は未来の出来事を正確に推論することで決定を下す素晴らしい能力を持っている。
本研究では,高次元のシーン観察からエンドツーエンドに学習する汎用コンテンシビリティプランナを開発する。
このモデルが行動観察から忍耐強くコンティンジェンシーを学習できることを示す。
論文 参考訳(メタデータ) (2021-04-21T14:30:20Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
エージェント間の相互作用と将来のシーン構造を予測するIPC(Instance-Aware Predictive Control)アプローチを提案する。
我々は,ego中心の視点でエージェント間のインタラクションを推定するために,新しいマルチインスタンスイベント予測モジュールを採用する。
シーンレベルとインスタンスレベルの両方の予測状態をより有効活用するために、一連のアクションサンプリング戦略を設計します。
論文 参考訳(メタデータ) (2021-01-14T22:21:25Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
自律走行におけるマルチエージェント軌道予測には、周囲の車両や歩行者の挙動を正確に予測するエージェントが必要である。
マルチモーダル世界から複数の入力信号を合成するモデルを提案する。
従来の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-06T13:59:39Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
都市混合交通圏における軌道予測は多くのインテリジェント交通システムにとって重要である。
本稿では,過去と未来の両方のシーンコンテキストを符号化して学習するマルチコンテキストネットワーク(MCENET)を提案する。
推定時間において,対象エージェントの過去の状況と動作情報と潜伏変数のサンプリングを組み合わせ,複数の現実的軌跡を予測する。
論文 参考訳(メタデータ) (2020-02-14T11:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。