論文の概要: SM3D: Simultaneous Monocular Mapping and 3D Detection
- arxiv url: http://arxiv.org/abs/2111.12643v1
- Date: Wed, 24 Nov 2021 17:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 15:26:39.037827
- Title: SM3D: Simultaneous Monocular Mapping and 3D Detection
- Title(参考訳): SM3D:同時単分子マッピングと3D検出
- Authors: Runfa Li, Truong Nguyen
- Abstract要約: 本稿では,同時マッピングと3次元検出のための,革新的で効率的なマルチタスク深層学習フレームワーク(SM3D)を提案する。
両モジュールのエンドツーエンドのトレーニングにより、提案したマッピングと3D検出は、最先端のベースラインを10.0%、精度13.2%で上回っている。
我々の単分子マルチタスクSM3Dは純粋なステレオ3D検出器の2倍以上の速度で、2つのモジュールを別々に使用するより18.3%速い。
- 参考スコア(独自算出の注目度): 1.2183405753834562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mapping and 3D detection are two major issues in vision-based robotics, and
self-driving. While previous works only focus on each task separately, we
present an innovative and efficient multi-task deep learning framework (SM3D)
for Simultaneous Mapping and 3D Detection by bridging the gap with robust depth
estimation and "Pseudo-LiDAR" point cloud for the first time. The Mapping
module takes consecutive monocular frames to generate depth and pose
estimation. In 3D Detection module, the depth estimation is projected into 3D
space to generate "Pseudo-LiDAR" point cloud, where LiDAR-based 3D detector can
be leveraged on point cloud for vehicular 3D detection and localization. By
end-to-end training of both modules, the proposed mapping and 3D detection
method outperforms the state-of-the-art baseline by 10.0% and 13.2% in
accuracy, respectively. While achieving better accuracy, our monocular
multi-task SM3D is more than 2 times faster than pure stereo 3D detector, and
18.3% faster than using two modules separately.
- Abstract(参考訳): マッピングと3D検出は、ビジョンベースのロボティクスと自動運転の2つの大きな問題である。
従来の作業では,各タスクに個別にフォーカスするしかなかったが,頑健な深度推定と"擬似LiDAR"ポイントクラウドでギャップを埋めることで,同時マッピングと3次元検出のための,革新的で効率的なマルチタスク深度学習フレームワーク(SM3D)を初めて提示する。
マッピングモジュールは、深度とポーズ推定を生成するために連続する単眼フレームを取る。
3d検出モジュールでは、深度推定を3d空間に投影して"pseudo-lidar"ポイントクラウドを生成し、lidarベースの3d検出器をポイントクラウド上で活用して、車両の3d検出とローカライズを行う。
両モジュールのエンドツーエンドのトレーニングにより、提案したマッピング法と3D検出法は、それぞれ10.0%と13.2%の精度で最先端となる。
精度が向上する一方、我々の単眼マルチタスクSM3Dは純粋なステレオ3D検出器の2倍以上の速度で、2つのモジュールを別々に使用するより18.3%速い。
関連論文リスト
- Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
3次元検出の精度は最先端の単分子検出法と比較して20%向上する。
論文 参考訳(メタデータ) (2024-04-10T03:54:53Z) - Weakly Supervised Monocular 3D Detection with a Single-View Image [58.57978772009438]
モノクロ3D検出は、単一視点画像からの正確な3Dオブジェクトのローカライゼーションを目的としている。
SKD-WM3Dは弱い教師付き単分子3D検出フレームワークである。
我々は,SKD-WM3Dが最先端技術を超え,多くの完全教師付き手法と同等であることを示した。
論文 参考訳(メタデータ) (2024-02-29T13:26:47Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDARが生成する点雲は、最先端の3Dオブジェクト検出器の主要な情報源である。
小さい、遠く、不完全な点の少ない物体は、しばしば検出するのが困難である。
Sparse2Denseは、潜在空間における点雲の密度化を学習することで、3D検出性能を効率的に向上する新しいフレームワークである。
論文 参考訳(メタデータ) (2022-11-23T16:01:06Z) - Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving [14.582107328849473]
ステレオビューにおける画像-画像生成のギャップは、画像-画像-LiDAR生成のギャップよりもはるかに小さい。
そこで我々はPseudo-Stereo 3D検出フレームワークを3つの新しい仮想ビュー生成手法で提案する。
我々のフレームワークは、KITTI-3Dベンチマークで公表されたモノクラー3D検出器の中で、車、歩行者、サイクリストで1位にランクインしている。
論文 参考訳(メタデータ) (2022-03-04T03:00:34Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
我々は、点雲をアンカーフリーで検出する新しい1段3次元検出器を開発した。
ボクセルをベースとしたスパース3D特徴量からスパース2D特徴量マップに変換することでこれを克服する。
検出信頼度スコアとバウンディングボックス回帰の精度との相関性を改善するために,IoUに基づく検出信頼度再校正手法を提案する。
論文 参考訳(メタデータ) (2021-08-08T13:42:13Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
擬似LiDAR(PL)は、LiDARセンサに基づく手法と安価なステレオカメラに基づく手法の精度ギャップを劇的に減らした。
PLは最先端のディープニューラルネットワークと2D深度マップ出力を3Dポイントクラウド入力に変換することで3Dオブジェクト検出のための3D深度推定を組み合わせている。
我々は、PLパイプライン全体をエンドツーエンドにトレーニングできるように、差別化可能なRepresentation (CoR)モジュールに基づく新しいフレームワークを導入します。
論文 参考訳(メタデータ) (2020-04-07T02:18:38Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
本稿では,3次元検出器が境界を意識して点雲の最も密集した領域に焦点を合わせるのを支援する普遍モジュールを提案する。
KITTIデータセットの実験により、DENFIはベースライン単段検出器の性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2020-04-01T01:21:23Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。