Align Deep Features for Oriented Object Detection
- URL: http://arxiv.org/abs/2008.09397v3
- Date: Mon, 12 Jul 2021 03:26:49 GMT
- Title: Align Deep Features for Oriented Object Detection
- Authors: Jiaming Han, Jian Ding, Jie Li, Gui-Song Xia
- Abstract summary: We propose a single-shot Alignment Network (S$2$A-Net) consisting of two modules: a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM)
The FAM can generate high-quality anchors with an Anchor Refinement Network and adaptively align the convolutional features according to the anchor boxes with a novel Alignment Convolution.
The ODM first adopts active rotating filters to encode the orientation information and then produces orientation-sensitive and orientation-invariant features to alleviate the inconsistency between classification score and localization accuracy.
- Score: 40.28244152216309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past decade has witnessed significant progress on detecting objects in
aerial images that are often distributed with large scale variations and
arbitrary orientations. However most of existing methods rely on heuristically
defined anchors with different scales, angles and aspect ratios and usually
suffer from severe misalignment between anchor boxes and axis-aligned
convolutional features, which leads to the common inconsistency between the
classification score and localization accuracy. To address this issue, we
propose a Single-shot Alignment Network (S$^2$A-Net) consisting of two modules:
a Feature Alignment Module (FAM) and an Oriented Detection Module (ODM). The
FAM can generate high-quality anchors with an Anchor Refinement Network and
adaptively align the convolutional features according to the anchor boxes with
a novel Alignment Convolution. The ODM first adopts active rotating filters to
encode the orientation information and then produces orientation-sensitive and
orientation-invariant features to alleviate the inconsistency between
classification score and localization accuracy. Besides, we further explore the
approach to detect objects in large-size images, which leads to a better
trade-off between speed and accuracy. Extensive experiments demonstrate that
our method can achieve state-of-the-art performance on two commonly used aerial
objects datasets (i.e., DOTA and HRSC2016) while keeping high efficiency. The
code is available at https://github.com/csuhan/s2anet.
Related papers
- OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images [26.37802649901314]
Oriented object detection in remote sensing images is a challenging task due to objects being distributed in multi-orientation.
We propose an end-to-end transformer-based oriented object detector consisting of three dedicated modules to address these issues.
Compared with previous end-to-end detectors, the OrientedFormer gains 1.16 and 1.21 AP$_50$ on DIOR-R and DOTA-v1.0 respectively, while reducing training epochs from 3$times$ to 1$times$.
arXiv Detail & Related papers (2024-09-29T10:36:33Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
We propose Adaptive Spot-Guided Transformer (ASTR) for local feature matching.
ASTR models the local consistency and scale variations in a unified coarse-to-fine architecture.
arXiv Detail & Related papers (2023-03-29T12:28:01Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [4.247967690041766]
Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc.
Current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes.
We propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree.
arXiv Detail & Related papers (2020-12-08T01:30:06Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.