論文の概要: GraphAttacker: A General Multi-Task GraphAttack Framework
- arxiv url: http://arxiv.org/abs/2101.06855v1
- Date: Mon, 18 Jan 2021 03:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 05:50:33.460217
- Title: GraphAttacker: A General Multi-Task GraphAttack Framework
- Title(参考訳): GraphAttacker: 一般的なマルチタスクGraphAttackフレームワーク
- Authors: Jinyin Chen, Dunjie Zhang, Zhaoyan Ming and Kejie Huang
- Abstract要約: グラフニューラルネットワーク(GNN)は多くの実世界のアプリケーションでグラフ解析タスクにうまく活用されている。
攻撃者が生成した敵のサンプルは ほとんど知覚不能な摂動で 優れた攻撃性能を達成しました
本稿では,グラフ解析タスクに応じて構造と攻撃戦略を柔軟に調整可能な,新しい汎用グラフ攻撃フレームワークであるgraphattackerを提案する。
- 参考スコア(独自算出の注目度): 4.218118583619758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been successfully exploited in graph
analysis tasks in many real-world applications. However, GNNs have been shown
to have potential security issues imposed by adversarial samples generated by
attackers, which achieved great attack performance with almost imperceptible
perturbations. What limit the wide application of these attackers are their
methods' specificity on a certain graph analysis task, such as node
classification or link prediction. We thus propose GraphAttacker, a novel
generic graph attack framework that can flexibly adjust the structures and the
attack strategies according to the graph analysis tasks. Based on the
Generative Adversarial Network (GAN), GraphAttacker generates adversarial
samples through alternate training on three key components, the Multi-strategy
Attack Generator (MAG), the Similarity Discriminator (SD), and the Attack
Discriminator(AD). Furthermore, to achieve attackers within perturbation
budget, we propose a novel Similarity Modification Rate (SMR) to quantify the
similarity between nodes thus constrain the attack budget. We carry out
extensive experiments and the results show that GraphAttacker can achieve
state-of-the-art attack performance on graph analysis tasks of node
classification, graph classification, and link prediction. Besides, we also
analyze the unique characteristics of each task and their specific response in
the unified attack framework. We will release GraphAttacker as an open-source
simulation platform for future attack researches.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は多くの実世界のアプリケーションでグラフ解析タスクにうまく活用されている。
しかしながら、GNNは攻撃者によって生成された敵のサンプルによって課される潜在的なセキュリティ上の問題があり、ほとんど知覚不能な摂動を伴う攻撃性能を達成している。
これらの攻撃者の幅広い適用を制限するのは、ノード分類やリンク予測のような特定のグラフ分析タスクに対する手法の特異性である。
そこで我々は,グラフ解析タスクに従って,構造や攻撃戦略を柔軟に調整できる新しい汎用グラフ攻撃フレームワークであるGraphAttackerを提案する。
GAN(Generative Adversarial Network)に基づいて、GraphAttackerは、3つの主要なコンポーネント、MAG(Multi-strategy Attack Generator)、SD(Simisity Discriminator)、AD(Attatity Discriminator)を交互にトレーニングすることで、敵のサンプルを生成する。
さらに,摂動予算内で攻撃者を実現するために,ノード間の類似性を定量化する新しい類似性修正率(smr)を提案する。
本研究では,ノード分類,グラフ分類,リンク予測のグラフ解析タスクにおいて,GraphAttackerが最先端攻撃性能を達成可能であることを示す。
さらに,各タスクのユニークな特性と,それらの応答を統一攻撃フレームワークで分析する。
将来の攻撃研究のためのオープンソースのシミュレーションプラットフォームとして、GraphAttackerをリリースします。
関連論文リスト
- Attacks on Node Attributes in Graph Neural Networks [32.40598187698689]
本研究では,特徴に基づく敵対攻撃の適用を通じて,グラフモデルの脆弱性について検討する。
以上の結果から,GAD(Projected Gradient Descent)を用いた決定時間攻撃は,平均ノード埋め込みとグラフコントラスト学習戦略を用いた中毒攻撃に比べ,より強力であることが示唆された。
論文 参考訳(メタデータ) (2024-02-19T17:52:29Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - EDoG: Adversarial Edge Detection For Graph Neural Networks [17.969573886307906]
グラフニューラルネットワーク(GNN)は、バイオインフォマティクス、薬物設計、ソーシャルネットワークといった様々なタスクに広く応用されている。
近年の研究では、GNNは、微妙な摂動を加えることでノードやサブグラフの分類予測を誤認することを目的とした敵攻撃に弱いことが示されている。
本稿では,グラフ生成に基づく攻撃戦略の知識を必要とせず,汎用対向エッジ検出パイプラインEDoGを提案する。
論文 参考訳(メタデータ) (2022-12-27T20:42:36Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - Revisiting Adversarial Attacks on Graph Neural Networks for Graph
Classification [38.339503144719984]
本稿では,グラフ構造とノード特徴を操作することで,敵の例を生成する新しい汎用フレームワークを提案する。
具体的には,グラフ分類タスクに対応するノードレベルの重要度を生成するために,グラフクラスマッピングとその変種を利用する。
6つの実世界のベンチマークで4つの最先端グラフ分類モデルを攻撃する実験は、我々のフレームワークの柔軟性と有効性を検証する。
論文 参考訳(メタデータ) (2022-08-13T13:41:44Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
我々は,グラフ構造の摂動によるグラフ分類のためのGNNに対する敵対的攻撃について,系統的研究を行った。
我々は、高い攻撃成功率を維持しながら、グラフ内で摂動するエッジの数を最小化する最適化問題として、我々の攻撃を定式化する。
実世界の3つのデータセットに対する実験結果から,クエリや摂動を少なくして,グラフ分類のための代表的GNNを効果的に攻撃できることが示された。
論文 参考訳(メタデータ) (2021-08-21T14:01:34Z) - BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection [20.666171188140503]
グラフに基づく異常検出(GAD)は,グラフの強力な表現能力によって普及しつつある。
皮肉なことに、これらのGADツールは、データ間の関係を活用できるというユニークな利点のために、新たな攻撃面を公開する。
本稿では, この脆弱性を利用して, 代表的な回帰型GADシステムOddBallに対して, 標的となる新しいタイプの構造的中毒攻撃を設計する。
論文 参考訳(メタデータ) (2021-06-18T08:20:23Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Reinforcement Learning-based Black-Box Evasion Attacks to Link
Prediction in Dynamic Graphs [87.5882042724041]
動的グラフ(LPDG)におけるリンク予測は、多様な応用を持つ重要な研究課題である。
我々は,LPDG法の脆弱性を調査し,最初の実用的なブラックボックス回避攻撃を提案する。
論文 参考訳(メタデータ) (2020-09-01T01:04:49Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。